(本小題滿分10分)設(shè)a、b是非負實數(shù),求證:。
(方法一)證明:


因為實數(shù)a、b≥0,
所以上式≥0。即有。
(方法二)證明:由a、b是非負實數(shù),作差得


時,,從而,得;
時,,從而,得
所以。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知,試證:;并求函數(shù))的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知實數(shù)x,y滿足
x-2y+1≥0
|x|-y-1≤0
,則z=2x+y的最大值為( 。
A.4B.6C.8D.10

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若正數(shù)a,b滿足ab=a+b+3,則ab的最值范圍為(    )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(不等式選講)(本題滿分10分)
已知x,y,z均為正數(shù).求證:

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知均為正數(shù),,則的最小值是        (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分7分)選修4—5:不等式選講
已知,且、、是正數(shù),求證:.

查看答案和解析>>

同步練習冊答案