20.下列函數(shù)中,最小正周期為π且圖象關(guān)于y軸對(duì)稱的函數(shù)是( 。
A.$y=cos(2x+\frac{π}{2})$B.y=|sinx|C.$y={sin^2}(x-\frac{π}{4})$D.y=sin2x+cos2x

分析 先化簡(jiǎn)函數(shù)的解析式,再利用正弦函數(shù)、余弦函數(shù)的圖象的對(duì)稱性,得出結(jié)論.

解答 解:由于y=cos(2x+$\frac{π}{2}$)=-sin2x為奇函數(shù),它的圖象的關(guān)于原點(diǎn)對(duì)稱,故排除A;
由于y=|sinx|的最小正周期為π,且它是偶函數(shù),圖象關(guān)于y軸對(duì)稱,故滿足條件;
由于y=${sin}^{2}(x-\frac{π}{4})$=$\frac{1-cos(2x-\frac{π}{2})}{2}$=$\frac{1}{2}$-$\frac{1}{2}$sin2x為非奇非偶函數(shù),它的圖象不關(guān)于y軸對(duì)稱,故排除C;
由于y=sin2x+cos2x=$\sqrt{2}$sin(2x+$\frac{π}{4}$)為非奇非偶函數(shù),它的圖象不關(guān)于y軸對(duì)稱,故排除D,
故選:B.

點(diǎn)評(píng) 本題主要考查三角恒等變換,正弦函數(shù)、余弦函數(shù)的圖象的對(duì)稱性,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.?dāng)?shù)列{an}的通項(xiàng)公式an=$\frac{(n-1)•{2}^{n}}{n(n+1)}$,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.一個(gè)空間幾何體的三視圖如圖所示,則該幾何體的體積為8,其外接球的表面積為29π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}1≤x+y≤2\\ x≥0\\ y≥0\end{array}\right.$,則z=2x+y的最大值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如圖,在△ABC中,∠BAD=90°,$BC=\sqrt{3}BD$,AD=1,則$\overrightarrow{AC}$•$\overrightarrow{AD}$=(  )
A.2$\sqrt{3}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{3}}{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知等腰三角形ABC的底邊AB的長(zhǎng)為4,則$\overrightarrow{AC}•\overrightarrow{AB}$=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在等差數(shù)列{an}中,對(duì)任意正整數(shù)n,都有an+1+an=4n-58,則a2016=4002.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若復(fù)數(shù)$z=\frac{2i}{1-i}$(i是虛數(shù)單位),則$\overline z$=( 。
A.-1+iB.-1-iC.1+iD.1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若非零向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$=2|$\overrightarrow$|=|$\overrightarrow{a}$-3$\overrightarrow$|,則$\overrightarrow{a}$,$\overrightarrow$夾角的余弦值為( 。
A.$-\frac{3}{8}$B.$\frac{3}{8}$C.$-\frac{3}{4}$D.$\frac{3}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案