【題目】新高考方案的實(shí)施,學(xué)生對物理學(xué)科的選擇成了焦點(diǎn)話題. 某學(xué)校為了了解該校學(xué)生的物理成績,從,兩個班分別隨機(jī)調(diào)查了40名學(xué)生,根據(jù)學(xué)生的某次物理成績,得到班學(xué)生物理成績的頻率分布直方圖和班學(xué)生物理成績的頻數(shù)分布條形圖.

(Ⅰ)估計(jì)班學(xué)生物理成績的眾數(shù)、中位數(shù)(精確到)、平均數(shù)(各組區(qū)間內(nèi)的數(shù)據(jù)以該組區(qū)間的中點(diǎn)值為代表);

(Ⅱ)填寫列聯(lián)表,并判斷是否有的把握認(rèn)為物理成績與班級有關(guān)?

物理成績的學(xué)生數(shù)

物理成績的學(xué)生數(shù)

合計(jì)

合計(jì)

附:列聯(lián)表隨機(jī)變量;

【答案】(I);(II)有.

【解析】

(Ⅰ)直接根據(jù)頻率分布直方圖,求得各個組的概率,利用公式求得眾數(shù)、中位數(shù)和平均數(shù);

(II)利用頻率分布直方圖填寫列聯(lián)表,然后求,即可判斷出是否有的把握認(rèn)為物理成績與班級有關(guān).

(Ⅰ)估計(jì)A班學(xué)生物理成績的總數(shù)為:

由左至右各個分區(qū)間的概率分別為0.1,0.2,0.3,0.2,0.15,0.05

中位數(shù)60+

平均數(shù):

(Ⅱ)

物理成績的學(xué)生數(shù)

物理成績的學(xué)生數(shù)

合計(jì)

24

16

40

10

30

40

合計(jì)

34

46

80

所以有的把握認(rèn)為物理成績與班級有關(guān)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)為圓上一點(diǎn),軸于點(diǎn),軸于點(diǎn),點(diǎn)滿足為坐標(biāo)原點(diǎn)),點(diǎn)的軌跡為曲線.

)求的方程;

)斜率為的直線交曲線于不同的兩點(diǎn)、,是否存在定點(diǎn),使得直線、的斜率之和恒為0.若存在,則求出點(diǎn)的坐標(biāo);若不存在,則請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給定公差大于0的有限正整數(shù)等差數(shù)列,其中為質(zhì)數(shù)甲、乙兩人輪流從個石子中取石子規(guī)定每次每人可取個石子,取走的石子不再放回,甲先取,取到最后一個石子者為勝試問誰有必勝策略

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓)的左右焦點(diǎn)分別為,左右頂點(diǎn)分別為,過右焦點(diǎn)且垂直于長軸的直線交橢圓于兩點(diǎn),,的周長為.點(diǎn)作直線交橢圓于第一象限的點(diǎn),直線交橢圓于另一點(diǎn),直線與直線交于點(diǎn);

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若的面積為,求直線的方程;

(3)證明:點(diǎn)在定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,對于直線和點(diǎn)、,記,若,則稱點(diǎn),被直線l分隔,若曲線C與直線l沒有公共點(diǎn),且曲線C上存在點(diǎn),被直線l分隔,則稱直線l為曲線C的一條分隔線.

1)求證:點(diǎn)、被直線分隔;

2)若直線是曲線的分隔線,求實(shí)數(shù)的取值范圍;

3)動點(diǎn)M到點(diǎn)的距離與到y軸的距離之積為1,設(shè)點(diǎn)M的軌跡為E,求E的方程,并證明y軸為曲線E的分隔線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知一個12位的正整數(shù)可以被37整除,且只包含數(shù)碼,求這個12為數(shù)的各位數(shù)字之和的所有可能值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),函數(shù)

)求函數(shù)的極值;

)當(dāng)時,證明:對一切的,都有恒成立;

)當(dāng)時,函數(shù)有最小值,記的最小值為,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,經(jīng)過點(diǎn)且斜率為的直線與橢圓有兩個不同的交點(diǎn)

(1)求的取值范圍;

(2)設(shè)橢圓與軸正半軸、軸正半軸的交點(diǎn)分別為,是否存在常數(shù),使得向量共線?如果存在,求值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種常見疾病可分為Ⅰ、Ⅱ兩種類型.為了解該疾病類型與地域、初次患該疾病的年齡(以下簡稱初次患病年齡)的關(guān)系,在甲、乙兩個地區(qū)隨機(jī)抽取100名患者調(diào)查其疾病類型及初次患病年齡,得到如下數(shù)據(jù):

(1)從Ⅰ型疾病患者中隨機(jī)抽取1人,估計(jì)其初次患病年齡小于40歲的概率;

(2)記“初次患病年齡在的患者為“低齡患者”,初次患病年齡在的患者為“高齡患者”,根據(jù)表中數(shù)據(jù),解決以下問題:

將以下兩個列聯(lián)表補(bǔ)充完整,并判斷“地域”“初次患病年齡”這兩個變量中哪個變量與該疾病的類型有關(guān)聯(lián)的可能性更大.(直接寫出結(jié)論,不必說明理由)

(ii)記(i)中與該疾病的類型有關(guān)聯(lián)的可能性更大的變量為,問:是否有99.9%的把握認(rèn)為“該疾病的類型與有關(guān)?”

附:

查看答案和解析>>

同步練習(xí)冊答案