3.若sin(x+$\frac{π}{6}$)=$\frac{1}{4}$,則sin($\frac{5π}{6}$-x)+sin2($\frac{π}{3}$-x)+cos(2x+$\frac{π}{3}$)=$\frac{33}{16}$.

分析 由誘導(dǎo)公式、平方關(guān)系求出sin($\frac{5π}{6}$-x)和sin2($\frac{π}{3}$-x)的值,由二倍角公式求出cos(2x+$\frac{π}{3}$)的值,代入式子即可求值.

解答 解:因?yàn)閟in(x+$\frac{π}{6}$)=$\frac{1}{4}$,
所以sin($\frac{5π}{6}$-x)=sin(π-$\frac{π}{6}$-x)=sin(x+$\frac{π}{6}$)=$\frac{1}{4}$,
sin($\frac{π}{3}$-x)=sin[$\frac{π}{2}$-(x+$\frac{π}{6}$)]=cos(x+$\frac{π}{6}$),
則sin2($\frac{π}{3}$-x)=cos2(x+$\frac{π}{6}$)=1-sin2(x+$\frac{π}{6}$)=$\frac{15}{16}$,
cos(2x+$\frac{π}{3}$)=cos2(x+$\frac{π}{6}$)=1-2sin2(x+$\frac{π}{6}$)=$\frac{7}{8}$,
所以sin($\frac{5π}{6}$-x)+sin2($\frac{π}{3}$-x)+cos(2x+$\frac{π}{3}$)=$\frac{1}{4}+\frac{15}{16}+\frac{7}{8}$=$\frac{33}{16}$,
故答案為:$\frac{33}{16}$.

點(diǎn)評(píng) 本題考查誘導(dǎo)公式,平方關(guān)系,二倍角的余弦公式變形,注意角之間的關(guān)系,熟練掌握公式是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若集合A={-1,1},B={0,2},則集合{z|z=xy,x∈A,y∈B}中元素的個(gè)數(shù)為( 。
A.5B.4C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,E,F(xiàn)分別是正方形ABCD的邊BC,CD的中點(diǎn),沿圖中虛線折起來,它能形成怎樣的幾何體?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某市組織高一全體學(xué)生參加計(jì)算機(jī)操作比賽,等級(jí)分為1至10分,隨機(jī)調(diào)閱了A、B兩所學(xué)校各60名學(xué)生的成績(jī),得到樣本數(shù)據(jù)如表:
B校樣本數(shù)據(jù)統(tǒng)計(jì)表:
成績(jī)(分)12345678910
人數(shù)(個(gè))000912219630
(Ⅰ)計(jì)算兩校樣本數(shù)據(jù)的均值和方差,并根據(jù)所得數(shù)據(jù)進(jìn)行比較.
(Ⅱ)從A校樣本數(shù)據(jù)成績(jī)分別為7分、8分和9分的學(xué)生中按分層抽樣方法抽取6人,若從抽取的6人中任選2人參加更高一級(jí)的比賽,求這2人成績(jī)之和大于或等于15的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知在某個(gè)回歸分析中有甲、乙、丙三個(gè)模型,其R2的值依次為0.64、0.80和0.98,則下列說法正確的是(  )
A.甲模型擬合效果最好B.乙模型擬合效果最好
C.丙模型擬合效果最好D.擬合效果與R2的值無關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.函數(shù)f(x)=lg(4-x2)的定義域?yàn)椋?2,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點(diǎn)為F2(2,0),點(diǎn)P(1,-$\frac{\sqrt{15}}{3}$)在橢圓C上.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)是否存在斜率為-1直線l與橢圓C相交于M,N兩點(diǎn),使得|F1M|=|F1N|(F1為橢圓的左焦點(diǎn))?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若函數(shù)y=3x+a的圖象經(jīng)過第一、二、三象限,則a的取值范圍是-1<a<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知正方體ABCD-A1B1C1D1的邊長為a,則異面直線AC1與BD的距離為( 。
A.$\sqrt{3}$aB.$\frac{\sqrt{3}}{2}$aC.$\frac{\sqrt{6}}{3}$aD.$\frac{\sqrt{6}}{6}$a

查看答案和解析>>

同步練習(xí)冊(cè)答案