(12分)已知橢圓中心在原點(diǎn),一個(gè)焦點(diǎn)為,且長(zhǎng)軸長(zhǎng)與短軸長(zhǎng)的比是。
(1)求橢圓的方程;(5分)
(2)是否存在斜率為的直線,使直線與橢圓有公共點(diǎn),且原點(diǎn)與直線的距離等于4;若存在,求出直線的方程,若不存在,說(shuō)明理由。(7分)。

(1)(2)直線不存在

解析試題分析:(1)由題意得
……………………5分
(2) ………………2
…………………………2分
直線不存在!3分
考點(diǎn):橢圓方程及直線與橢圓的位置關(guān)系
點(diǎn)評(píng):第二小題中注意不要忽略

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
已知橢圓的左、右焦點(diǎn)分別為,離心率, .
(I)求橢圓的標(biāo)準(zhǔn)方程;
(II)過(guò)點(diǎn)的直線與該橢圓交于兩點(diǎn),且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(滿分12分)已知點(diǎn),直線 交軸于點(diǎn),點(diǎn)上的動(dòng)點(diǎn),過(guò)點(diǎn)垂直于的直線與線段的垂直平分線交于點(diǎn)
(Ⅰ)求點(diǎn)的軌跡的方程;(Ⅱ)若 A、B為軌跡上的兩個(gè)動(dòng)點(diǎn),且 證明直線AB必過(guò)一定點(diǎn),并求出該定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知雙曲線C的中心在原點(diǎn),拋物線的焦點(diǎn)是雙曲線C的一個(gè)焦點(diǎn),且雙曲線經(jīng)過(guò)點(diǎn),又知直線與雙曲線C相交于A、B兩點(diǎn).
(1)求雙曲線C的方程;
(2)若,求實(shí)數(shù)k值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知平面內(nèi)一動(dòng)點(diǎn)P到F(1,0)的距離比點(diǎn)P到軸的距離少1.
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)過(guò)點(diǎn)F的直線交軌跡C于A,B兩點(diǎn),交直線點(diǎn),且
,,
的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分12分)已知半徑為6的圓軸相切,圓心在直線上且在第二象限,直線過(guò)點(diǎn)
(Ⅰ)求圓的方程;
(Ⅱ)若直線與圓相交于兩點(diǎn)且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題14分)已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓短半軸長(zhǎng)為半徑的圓與直線相切,分別是橢圓的左右兩個(gè)頂點(diǎn),為橢圓上的動(dòng)點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若均不重合,設(shè)直線的斜率分別為,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓)的短軸長(zhǎng)與焦距相等,且過(guò)定點(diǎn),傾斜角為的直線交橢圓兩點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)確定直線軸上截距的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知雙曲線C的中心在原點(diǎn),拋物線的焦點(diǎn)是雙曲線C的一個(gè)焦點(diǎn),且雙曲線經(jīng)過(guò)點(diǎn),又知直線與雙曲線C相交于A、B兩點(diǎn).
(1)求雙曲線C的方程;
(2)若,求實(shí)數(shù)k值.

查看答案和解析>>

同步練習(xí)冊(cè)答案