已知橢圓:()的短軸長(zhǎng)與焦距相等,且過定點(diǎn),傾斜角為的直線交橢圓于、兩點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)確定直線在軸上截距的范圍.
(Ⅰ);(Ⅱ)
解析試題分析:(I)由已知得,,…………………………(2分)
又,由此解出,………………………………(3分)
從而橢圓方程為:…………………(6分)
(II)設(shè):,……………………………(7分)
與聯(lián)立得:……………………(9分)
則………………………(11分)
得,即,∴直線在軸上截距的范圍是……(13分)
考點(diǎn):橢圓的標(biāo)準(zhǔn)方程;橢圓的簡(jiǎn)單性質(zhì);直線與橢圓的綜合應(yīng)用。
點(diǎn)評(píng):直線和橢圓的綜合問題,一般可以轉(zhuǎn)化為它們的方程所組成的方程組求解的問題,從而用代數(shù)方法解決直線與橢圓的綜合問題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)橢圓:的左、右焦點(diǎn)分別為,焦距為2,,過作垂直于橢圓長(zhǎng)軸的弦長(zhǎng)為3.
(Ⅰ)求橢圓的方程;
(Ⅱ)若過的直線l交橢圓于兩點(diǎn).并判斷是否存在直線l使得的夾角為鈍角,若存在,求出l的斜率k的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)已知橢圓中心在原點(diǎn),一個(gè)焦點(diǎn)為,且長(zhǎng)軸長(zhǎng)與短軸長(zhǎng)的比是。
(1)求橢圓的方程;(5分)
(2)是否存在斜率為的直線,使直線與橢圓有公共點(diǎn),且原點(diǎn)與直線的距離等于4;若存在,求出直線的方程,若不存在,說明理由。(7分)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
已知橢圓的中心在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,直線與該橢圓相交于和,且,,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知拋物線,焦點(diǎn)為,頂點(diǎn)為,點(diǎn)在拋物線上移動(dòng),是的中點(diǎn),是的中點(diǎn),求點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
在直角坐標(biāo)系中,點(diǎn)到兩點(diǎn),的距離之和等于,設(shè)點(diǎn)的軌跡為。
(1)求曲線的方程;
(2)過點(diǎn)作兩條互相垂直的直線分別與曲線交于和。
①以線段為直徑的圓過能否過坐標(biāo)原點(diǎn),若能求出此時(shí)的值,若不能說明理由;
②求四邊形面積的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知雙曲線的一條漸近線方程是,若雙曲線經(jīng)過點(diǎn),求此雙曲線的標(biāo)準(zhǔn)方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題16分)在平面直角坐標(biāo)系中,是拋物線的焦點(diǎn),是拋物線上位于第一象限內(nèi)的任意一點(diǎn),過三點(diǎn)的圓的圓心為,點(diǎn)到拋物線的準(zhǔn)線的距離為.
(Ⅰ)求拋物線的方程;
(Ⅱ)是否存在點(diǎn),使得直線與拋物線相切于點(diǎn)?若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由;
(Ⅲ)若點(diǎn)的橫坐標(biāo)為,直線與拋物線有兩個(gè)不同的交點(diǎn),與圓有兩個(gè)不同的交點(diǎn),求當(dāng)時(shí),的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com