【題目】如圖,已知頂點,,動點分別在軸,軸上移動,延長至點,使得,且.
(1)求動點的軌跡;
(2)過點分別作直線交曲線于兩點,若直線的傾斜角互補,證明:直線的斜率為定值;
(3)過點分別作直線交曲線于兩點,若,直線是否經(jīng)過定點?若是,求出該定點,若不是,說明理由.
【答案】(1);(2)證明見解析;(3).
【解析】
(1)設(shè)點M,P,Q的坐標(biāo),將向量進(jìn)行坐標(biāo)化,整理即可得軌跡方程;(2)設(shè)點,,直線的傾斜角互補,則兩直線斜率互為相反數(shù),用斜率公式計算得到,即可計算kAB;(3)若,由兩直線斜率積為-1,可得到關(guān)于與的等量關(guān)系,寫出直線AB 的方程,將等量關(guān)系代入直線方程整理可得直線AB經(jīng)過的定點.
(1)設(shè),,.
由,得,即.
因為,所以,所以.
所以動點的軌跡為拋物線,其方程為.
(2)證明:設(shè)點,,
若直線的傾斜角互補,則兩直線斜率互為相反數(shù),
又,,所以,
,整理得,
所以.
(3)因為,
所以,
即,①
直線的方程為:,
整理得:,②
將①代入②得,即,
當(dāng)時,
即直線經(jīng)過定點.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列{an}中,a1=2,a2=4,且當(dāng)n≥2時,an2=an-1an+1,;
(1)求數(shù)列{an}的通項公式an;
(2)若bn=(2n-1)an,求數(shù)列{bn}的前n項和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件,測量這些產(chǎn)品的一項質(zhì)量指標(biāo)值,由測量表得如下頻數(shù)分布表:
質(zhì)量指標(biāo)值分組 | [75,85) | [85,95) | [95,105) | [105,115) | [115,125) |
頻數(shù) | 6 | 26 | 38 | 22 | 8 |
(I)在答題卡上作出這些數(shù)據(jù)的頻率分布直方圖:
(II)估計這種產(chǎn)品質(zhì)量指標(biāo)值的平均數(shù)及方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(III)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“質(zhì)量指標(biāo)值不低于95的產(chǎn)品至少要占全部產(chǎn)品的80%”的規(guī)定?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了調(diào)查教師對教育改革認(rèn)識水平,現(xiàn)從某市年齡在的教師隊伍中隨機(jī)選取100名教師,得到的頻率分布直方圖如圖所示,若從年齡在中用分層抽樣的方法選取6名教師代表.
(1)求年齡在中的教師代表人數(shù);
(2)在這6名教師代表中隨機(jī)選取2名教師,求在中至少有一名教師被選中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列是各項均不為的等差數(shù)列,公差為,為其前項和,且滿足
,.?dāng)?shù)列滿足,為數(shù)列的前n項和.
(1)求、和;
(2)若對任意的,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD中,E,F分別是CD,AD的中點,BE,CF交于點P.求證:
(1)BE⊥CF;
(2)AP=AB.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,平面AED⊥平面ABCD,EF∥AB,AB=2,BC=EF=1,AE=,DE=3,∠BAD=60°,G為BC的中點,H為CD中點.
(1)求證:平面FGH∥平面BED;
(2)求證:BD⊥平面AED;
(3)求直線EF與平面BED所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某工廠要設(shè)計一個部件(如圖陰影部分所示),要求從圓形鐵片上進(jìn)行裁剪,部件由三個全等的矩形和一個等邊三角形構(gòu)成,設(shè)矩形的兩邊長分別為,(單位:cm),且要求 ,部件的面積是.
(1)求y關(guān)于x的函數(shù)表達(dá)式,并求定義域;
(2)為了節(jié)省材料,請問x取何值時,所用到的圓形鐵片面積最小,并求出最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的離心率,過橢圓的左焦點且傾斜角為的直線與圓相交所得弦長為.
(1)求橢圓的方程;
(2)是否存在過點的直線與橢圓交于兩點,且,若存在,求直線的方程;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com