【題目】若以曲線上任意一點為切點作切線,曲線上總存在異于的點,以點為切點作切線,且,則稱曲線具有“可平行性”,現(xiàn)有下列命題:
①函數(shù)的圖象具有“可平行性”;
②定義在的奇函數(shù)的圖象都具有“可平行性”;
③三次函數(shù)具有“可平行性”,且對應(yīng)的兩切點, 的橫坐標(biāo)滿足;
④要使得分段函數(shù)的圖象具有“可平行性”,當(dāng)且僅當(dāng).
其中的真命題個數(shù)有()
A. 1 B. 2 C. 3 D. 4
【答案】B
【解析】由“可平行性”的定義,可得曲線y=f(x)具有“可平行性”,則方程y′=a(a是導(dǎo)數(shù)值)至少有兩個根。
①函數(shù)y=(x2)2+lnx,則y′=2(x2)+ = (x>0),方程,即2x2(4+a)x+1=0,當(dāng)時有兩個相等正根,不符合題意;
②定義在(∞,0)∪(0,+∞)的奇函數(shù),如y=x3, 則,方程,當(dāng)時有兩個相等實數(shù)根,不符合題意;
③三次函數(shù)f(x)=x3x2+ax+b,則f′(x)=3x22x+a,滿足題意時, 的一元二次方程的實數(shù)根,即,命題③正確;
④函數(shù)y=ex1(x<0),y′=ex∈(0,1),
函數(shù)y=x+1x,y′=11x2=x21x2=11x2,由11x2∈(0,1),得1x2∈(0,1),∴x>1,則m=1.
故要使得分段函數(shù)的圖象具有“可平行性”,
當(dāng)時, ,且導(dǎo)函數(shù)單調(diào)遞增,
當(dāng)時, 的值域應(yīng)該是,
結(jié)合冪函數(shù)的性質(zhì)和函數(shù)的平移性質(zhì)可得導(dǎo)函數(shù)在上單調(diào)遞增,且, ,據(jù)此可得m=1.
真命題個數(shù)為2個.
本題選擇B選項.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l:y=3x+3.
(1)求點P(5,3)關(guān)于直線l的對稱點P′的坐標(biāo);
(2)求直線l1:x﹣y﹣2=0關(guān)于直線l的對稱直線l2的方程;
(3)已知點M(2,6),試在直線l上求一點N使得|NP|+|NM|的值最。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在汶川大地震后對唐家山堰塞湖的搶險過程中,武警官兵準(zhǔn)備用射擊的方法引爆從湖壩上游漂流而下的一個巨大的汽油罐.已知只有5發(fā)子彈,第一次命中只能使汽油流出,第二次命中才能引爆.每次射擊是相互獨立的,且命中的概率都是.
(1)求油罐被引爆的概率;
(2)如果引爆或子彈打光則停止射擊,設(shè)射擊次數(shù)為,求的分布列及.( 結(jié)果用分?jǐn)?shù)表示)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域為R的奇函數(shù)y=f(x)的導(dǎo)函數(shù)為y=f′(x),當(dāng)x≠0時, >0,若a=f(1),b=﹣2f(﹣2),c=(ln )f(ln ),則a,b,c的大小關(guān)系正確的是( )
A.a<c<b
B.b<c<a
C.a<b<c
D.c<a<b
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點A(0,﹣2),橢圓E: =1(a>b>0)的離心率為 ,F(xiàn)是橢圓的焦點,直線AF的斜率為 ,O為坐標(biāo)原點. (Ⅰ)求E的方程;
(Ⅱ)設(shè)過點A的直線l與E相交于P,Q兩點,當(dāng)△OPQ的面積最大時,求l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,以O(shè)為極點,x正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρcos( )=1,M,N分別為C與x軸,y軸的交點.
(1)寫出C的直角坐標(biāo)方程,并求M,N的極坐標(biāo);
(2)設(shè)MN的中點為P,求直線OP的極坐標(biāo)方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com