【題目】如圖,已知四棱錐P-ABCD,△PAD是以AD為斜邊的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E為PD的中點(diǎn).
(I)證明:CE∥平面PAB;
(II)求直線CE與平面PBC所成角的正弦值
【答案】(I)見解析;(II).
【解析】試題本題主要考查空間點(diǎn)、線、面位置關(guān)系,直線與平面所成的角等基礎(chǔ)知識(shí),同時(shí)考查空間想象能力和運(yùn)算求解能力。滿分15分。
(Ⅰ)取PA中點(diǎn)F,構(gòu)造平行四邊形BCEF,可證明;(Ⅱ)由題意,取BC,AD的中點(diǎn)M,N,可得AD⊥平面PBN,即BC⊥平面PBN,過點(diǎn)Q作PB的垂線,垂足為H,連結(jié)MH.可知MH是MQ在平面PBC上的射影,所以∠QMH是直線CE與平面PBC所成的角.依此可在Rt△MQH中,求∠QMH的正弦值.
試題解析:
(Ⅰ)如圖,設(shè)PA中點(diǎn)為F,連接EF,FB.
因?yàn)?/span>E,F分別為PD,PA中點(diǎn),所以且,
又因?yàn)?/span>, ,所以且,
即四邊形BCEF為平行四邊形,所以,
因此平面PAB.
(Ⅱ)分別取BC,AD的中點(diǎn)為M,N.連接PN交EF于點(diǎn)Q,連接MQ.
因?yàn)?/span>E,F,N分別是PD,PA,AD的中點(diǎn),所以Q為EF中點(diǎn),
在平行四邊形BCEF中,MQ//CE.
由△PAD為等腰直角三角形得PN⊥AD.
由DC⊥AD,N是AD的中點(diǎn)得BN⊥AD.
所以AD⊥平面PBN,
由BC//AD得BC⊥平面PBN,
那么平面PBC⊥平面PBN.
過點(diǎn)Q作PB的垂線,垂足為H,連接MH.
MH是MQ在平面PBC上的射影,所以∠QMH是直線CE與平面PBC所成的角.
設(shè)CD=1.
在△PCD中,由PC=2,CD=1,PD=得CE=,
在△PBN中,由PN=BN=1,PB=得QH=,
在Rt△MQH中,QH=,MQ=,
所以sin∠QMH=,
所以直線CE與平面PBC所成角的正弦值是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知以M點(diǎn)為圓心的圓及其上一點(diǎn).
(1)設(shè)圓N與y軸相切,與圓M外切,且圓心在直線上,求圓N的標(biāo)準(zhǔn)方程;
(2)設(shè)平行于OA的直線l與圓M相交于B,C兩點(diǎn)且,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年9月,臺(tái)風(fēng)“山竹”在沿海地區(qū)登陸,小張調(diào)查了當(dāng)?shù)啬承^(qū)的100戶居民由于臺(tái)風(fēng)造成的經(jīng)濟(jì)損失,將收集到的數(shù)據(jù)分成五組:,,,,單位:千元,并作出如下頻率分布直方圖
經(jīng)濟(jì)損失不超過4千元 | 經(jīng)濟(jì)損失超過4千元 | 合計(jì) | |
捐款超過 500元 | 60 | ||
捐款不超 過500元 | 10 | ||
合計(jì) |
1臺(tái)風(fēng)后居委會(huì)號(hào)召小區(qū)居民為臺(tái)風(fēng)重災(zāi)區(qū)捐款,小張調(diào)查的100戶居民捐款情況如表格,在表格空白處填寫正確數(shù)字,并說明是否有以上的把握認(rèn)為捐款數(shù)額多于或少于500元和自身經(jīng)濟(jì)損失是否到4千元有關(guān)?
2將上述調(diào)查得到的頻率視為概率,現(xiàn)在從該地區(qū)大量受災(zāi)居民中,采用隨機(jī)抽樣的方法每次抽取一戶居民,連抽3次,記被抽取的3戶居民中自身經(jīng)濟(jì)損失超過4千元的戶數(shù)為,若每次抽取的結(jié)果是相互獨(dú)立的,求的分布列和數(shù)學(xué)期望.
附:臨界值表:
k |
隨機(jī)變量:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某快遞公司收取快遞費(fèi)用的標(biāo)準(zhǔn)是:重量不超過的包裹收費(fèi)元;重量超過的包裹,除收費(fèi)元之外,超過的部分,每超出(不足,按計(jì)算)需再收元.
該公司將近天,每天攬件數(shù)量統(tǒng)計(jì)如下:
包裹件數(shù)范圍 | |||||
包裹件數(shù) (近似處理) | |||||
天數(shù) |
(1)某人打算將, , 三件禮物隨機(jī)分成兩個(gè)包裹寄出,求該人支付的快遞費(fèi)不超過元的概率;
(2)該公司從收取的每件快遞的費(fèi)用中抽取元作為前臺(tái)工作人員的工資和公司利潤(rùn),剩余的作為其他費(fèi)用.前臺(tái)工作人員每人每天攬件不超過件,工資元,目前前臺(tái)有工作人員人,那么,公司將前臺(tái)工作人員裁員人對(duì)提高公司利潤(rùn)是否更有利?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從甲、乙兩品種的棉花中各抽測(cè)了25根棉花的纖維長(zhǎng)度(單位:mm),得到如圖5的莖葉圖,整數(shù)位為莖,小數(shù)位為葉,如27.1mm的莖為27,葉為1.
(1)試比較甲、乙兩種棉花的纖維長(zhǎng)度的平均值的大小及方差的大小;(只需寫出估計(jì)的結(jié)論,不需說明理由)
(2)將棉花按纖維長(zhǎng)度的長(zhǎng)短分成七個(gè)等級(jí),分級(jí)標(biāo)準(zhǔn)如表:
試分別估計(jì)甲、乙兩種棉花纖維長(zhǎng)度等級(jí)為二級(jí)的概率;
(3)為進(jìn)一步檢驗(yàn)甲種棉花的其它質(zhì)量指標(biāo),現(xiàn)從甲種棉花中隨機(jī)抽取4根,記為抽取的棉花纖維長(zhǎng)度為二級(jí)的根數(shù),求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在圓上任取一點(diǎn),過點(diǎn)作軸的垂線段,垂足為,點(diǎn)在線段上,且,當(dāng)點(diǎn)在圓上運(yùn)動(dòng)時(shí).
(1)求點(diǎn)的軌跡的方程;
(2)設(shè)直線與上述軌跡相交于M、N兩點(diǎn),且MN的中點(diǎn)在直線上,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系中,過點(diǎn)的直線的參數(shù)方程為(為參數(shù)).以原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求直線的普通方程和曲線的直角坐標(biāo)方程;
(2)若直線與曲線相交于, 兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖, 是邊長(zhǎng)為的正方形,平面平面, , , , .
(1)求證:面面;
(2)求直線與平面所成角的正弦值;
(3)在線段上是否存在點(diǎn),使得二面角的大小為?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com