【題目】【2018河南豫南九校高三下學(xué)期第一次聯(lián)考】設(shè)函數(shù).
(I)當(dāng)時, 恒成立,求的范圍;
(II)若在處的切線為,且方程恰有兩解,求實(shí)數(shù)的取值范圍.
【答案】(I) (II)
【解析】試題分析:(1)將參數(shù)值代入得到函數(shù)表達(dá)式,研究函數(shù)的單調(diào)性求得函數(shù)最值,使得最小值大于等于0即可;(2)根據(jù)切線得到, ,方程有兩解,可得,所以有兩解,令,研究這個函數(shù)的單調(diào)性和圖像,使得常函數(shù)y=m,和有兩個交點(diǎn)即可.
解析:
由,
當(dāng)時,得.
當(dāng)時, ,且當(dāng)時, ,此時.
所以,即在上單調(diào)遞増,
所以,
由恒成立,得,所以.
(2)由得
,且.
由題意得,所以.
又在切線上.
所以.所以.
所以.
即方程有兩解,可得,所以.
令,則,
當(dāng)時, ,所以在上是減函數(shù).
當(dāng)時, ,所以在上是減函數(shù).
所以.
又當(dāng)時, ;且有.
數(shù)形結(jié)合易知: .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求在處的切線方程;
(2)設(shè)函數(shù),函數(shù)有且僅有一個零點(diǎn).
(i)求的值;
(ii)若時, 恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2018天一大聯(lián)考高中畢業(yè)班階段性測試(四)】已知函數(shù), .
(I)若恒成立,求實(shí)數(shù)的取值范圍;
(II)證明:對于任意正整數(shù),都有成立.
附: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著共享單車的成功運(yùn)營,更多的共享產(chǎn)品逐步走入大家的世界,共享汽車、共享籃球、共享充電寶等各種共享產(chǎn)品層出不窮.某公司隨機(jī)抽取1000人對共享產(chǎn)品是否對日常生活有益進(jìn)行了問卷調(diào)查,并對參與調(diào)查的1000人中的性別以及意見進(jìn)行了分類,得到的數(shù)據(jù)如下表所示:
男 | 女 | 總計 | |
認(rèn)為共享產(chǎn)品對生活有益 | 400 | 300 | 700 |
認(rèn)為共享產(chǎn)品對生活無益 | 100 | 200 | 300 |
總計 | 500 | 500 | 1000 |
(1)根據(jù)表中的數(shù)據(jù),能否在犯錯誤的概率不超過0.1%的前提下,認(rèn)為共享產(chǎn)品的態(tài)度與性別有關(guān)系?
(2)為了答謝參與問卷調(diào)查的人員,該公司對參與本次問卷調(diào)查的人員隨機(jī)發(fā)放1張超市的購物券,購物券金額以及發(fā)放的概率如下:
購物券金額 | 20元 | 50元 |
概率 |
現(xiàn)有甲、乙兩人領(lǐng)取了購物券,記兩人領(lǐng)取的購物券的總金額為,求的分布列和數(shù)學(xué)期望.
參考公式: .
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓系方程: (, ), 是橢圓的焦點(diǎn), 是橢圓上一點(diǎn),且.
(1)求的離心率并求出的方程;
(2)為橢圓上任意一點(diǎn),過且與橢圓相切的直線與橢圓交于, 兩點(diǎn),點(diǎn)關(guān)于原點(diǎn)的對稱點(diǎn)為,求證: 的面積為定值,并求出這個定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三棱錐中,側(cè)面底面, 是等腰直角三角形的斜邊,且.
(1)求證: ;
(2)已知平面平面,平面平面, ,且到平面的距離相等,試確定直線及點(diǎn)的位置(說明作法及理由),并求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方形的邊長為2,分別以, 為一邊在空間中作正三角形, ,延長到點(diǎn),使,連接, .
(1)證明: 平面;
(2)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等比數(shù)列的各項為正數(shù),且.
(1)求的通項公式;
(2)設(shè),求證數(shù)列的前項和<2.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com