已知定義在R上的函數(shù)y=f(x)的圖象是一條不間斷的曲線,f(a)≠f(b),其中a<b,設(shè)F(x)=f(x)-
f(a)+f(b)
2
,求證:函數(shù)F(x)在(a,b)上有零點.
考點:函數(shù)零點的判定定理
專題:證明題,函數(shù)的性質(zhì)及應(yīng)用
分析:由題意可判斷F(x)在R上的圖象是一條不間斷的曲線,再利用函數(shù)零點的判定定理判定即可.
解答: 證明:∵定義在R上的函數(shù)y=f(x)的圖象是一條不間斷的曲線,
∴F(x)在R上的圖象是一條不間斷的曲線,
又∵F(a)F(b)=(f(a)-
f(a)+f(b)
2
)(f(b)-
f(a)+f(b)
2

=
f(a)-f(b)
2
f(b)-f(a)
2

=-(
f(a)-f(b)
2
2<0;
∴函數(shù)F(x)在(a,b)上有零點.
點評:本題考查了函數(shù)零點的判定定理的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知三角形ABC的三個角A,B,C所對的邊分別為a,b,c,且A=60°,c=3b,求:
(1)
a
c
的值;
(2)tanB+tanC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a、b、c分別是A、B、C的對邊,已知
a2
b+c
+
c2
a+b
=b.求B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知兩個正方形ABCD 和DCEF不在同一平面內(nèi),且平面ABCD⊥平面DCEF,M,N分別為AB,DF的中點.
(1)求直線MN與平面ABCD所成角的正弦值;
(2)求異面直線ME 與 BN 所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=cos2x-2
3
sinxcosx下列命題中正確的是( 。
(1)若存在x1,x2有x1-x2=z時,f(x1)=f(x2)成立
(2)f(x)在[-
π
6
,
π
3
]是單調(diào)遞增
(3)函數(shù)f(x)關(guān)于點(
π
12
,0)成中心對稱圖象
(4)將函數(shù)f(x)的圖象向左平移
12
個單位后將與y=2sin2x重合.
A、(1)(2)
B、( 1)(3)
C、( 1)(2)(3)
D、(1)(3)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x2-3x+1.
(1)當(dāng)0≤x≤
π
2
時,求y=f(sinx)的最大值;
(2)問a取何值時,方程f(sinx)=a-sinx在[0,2π)上有兩解?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在正方體ABCD-A1B1C1D1中,P,Q分別是AB,B1C1上的點AP=B1Q,N是PQ的中點,M是正方形ABB1A1的中心.求證:
(1)MN∥平面A1B1C1D1;
(2)MN∥A1C1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x2+2x+a(a∈R,x<0)圖象上兩點A(x1,f(x1)),B(x2,f(x2))(x1<x2)處的切線相互垂直,則x2-x1的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在正方形ABCD中,E,F(xiàn)分別為邊AD,BC的中點,若沿EF將正方形折成一個二面角A-EF-D使得AD=
2
AE,則異面直線AD與CE所成角的余弦值為
 

查看答案和解析>>

同步練習(xí)冊答案