5.將函數(shù)y=sin(x+$\frac{π}{4}$)圖象上的所有點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼?\frac{1}{2}$倍,所得函數(shù)為f(x),則函數(shù)f(x)=$f(x)=sin(2x+\frac{π}{4})$.

分析 根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律可得答案.

解答 解:函數(shù)y=sin(x+$\frac{π}{4}$)圖象上的所有點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼?\frac{1}{2}$倍,周期變小,可得sin($\frac{1}{2}$x+$\frac{π}{4}$),即函數(shù)為f(x)=sin($\frac{1}{2}$x+$\frac{π}{4}$),
故答案為:$f(x)=sin(2x+\frac{π}{4})$.

點(diǎn)評(píng) 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.A是集合{1,2,3,…,14}的子集,從A中任取3個(gè)元素,由小到大排列之后都不能構(gòu)成等差數(shù)列,則A中元素個(gè)數(shù)的最大值是8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在等比數(shù)列{an}中,a1=-16,a4=$\frac{1}{4}$則q=( 。
A.q=$\frac{1}{4}$B.q=-$\frac{1}{4}$C.q=4D.q=-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知圓C:x2+y2-2x-1=0,直線l:3x-4y+12=0,圓C上任意一點(diǎn)P到直線l的距離小于2的概率為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.圓x2+y2-2x+4y+1=0的面積為4π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知梯形ABCD,AB∥CD,且AB=AD=2,CD=3.
(1)用向量$\overrightarrow{AD}$、$\overrightarrow{BC}$表示向量$\overrightarrow{BD}$;
(2)若AD⊥AB,求向量$\overrightarrow{AC}$、$\overrightarrow{BD}$夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)與f'(x)的圖象如圖所示,則函數(shù)$g(x)=\frac{f(x)}{e^x}$的單調(diào)遞增區(qū)間為( 。
A.(0,4)B.$({-∞,1}),({\frac{4}{3},4})$C.(0,1),(4,+∞)D.(-∞,0),(1,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在銳角△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且$\sqrt{3}$a=2csinA.
(1)確定角C的大小;
(2)若c=$\sqrt{7}$,且ab=6,求邊a,b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0),其部分圖象如圖所示,點(diǎn)P,Q分別為圖象上相鄰的最高點(diǎn)與最低點(diǎn),R是圖象與x軸的交點(diǎn),若P點(diǎn)的橫坐標(biāo)為$\frac{1}{3}$,f($\frac{1}{3}$)=$\sqrt{3}$,PR⊥QR,則函數(shù)f(x)的解析式可以是( 。
A.$f(x)=\sqrt{3}sin(\frac{π}{2}x+\frac{π}{3})$B.$f(x)=\sqrt{3}sin(\frac{π}{2}x-\frac{π}{6})$
C.$f(x)=\sqrt{3}sin(\frac{2π}{3}x+\frac{5π}{18})$D.$f(x)=\sqrt{3}sin(πx+\frac{π}{6})$

查看答案和解析>>

同步練習(xí)冊(cè)答案