【題目】公元263年左右,我國數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無限增加時(shí),多邊形的面積可無限逼近圓的面積,并創(chuàng)立了“割圓術(shù)”.利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點(diǎn)后兩位的近似值3.14,這就是著名的“徽率”.如圖是利用劉徽的“割圓術(shù)”思想設(shè)計(jì)的一個(gè)程序框圖,其中n表示圓內(nèi)接正多邊形的邊數(shù),執(zhí)行此算法輸出的圓周率的近似值依次為(參考數(shù)據(jù): ≈1.732,sin15°≈0.2588,sin75°≈0.1305)( )
A.2.598,3,3.1048
B.2.598,3,3.1056
C.2.578,3,3.1069
D.2.588,3,3.1108
【答案】B
【解析】解:當(dāng)n=6時(shí),S= ×6×sin60°=2.598,輸出S=2.598,
6<24,繼續(xù)循環(huán),當(dāng)n=12時(shí),S= ×12×sin30°=3,輸出S=3,
12<24,繼續(xù)循環(huán),當(dāng)n=24時(shí),S= ×24×sin15°=3.1056,輸出S=3.1056,
24=24,結(jié)束,
∴故選B.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解程序框圖(程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準(zhǔn)確、直觀地表示算法的圖形;一個(gè)程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程序框外必要文字說明).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,P(x0 , y0)是橢圓 +y2=1的上的點(diǎn),l是橢圓在點(diǎn)P處的切線,O是坐標(biāo)原點(diǎn),OQ∥l與橢圓的一個(gè)交點(diǎn)是Q,P,Q都在x軸上方
(1)當(dāng)P點(diǎn)坐標(biāo)為( , )時(shí),利用題后定理寫出l的方程,并驗(yàn)證l確定是橢圓的切線;
(2)當(dāng)點(diǎn)P在第一象限運(yùn)動(dòng)時(shí)(可以直接應(yīng)用定理)
①求△OPQ的面積
②求直線PQ在y軸上的截距的取值范圍.
定理:若點(diǎn)(x0 , y0)在橢圓 +y2=1上,則橢圓在該點(diǎn)處的切線方程為 +y0y=1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直線mx+ny=1與圓x2+y2=4的交點(diǎn)為整點(diǎn)(橫縱坐標(biāo)均為正數(shù)的點(diǎn)),這樣的直線的條數(shù)是( )
A.2
B.4
C.6
D.8
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足條件:a1=1,a2=r(r>0),且{anan+1}是公比為q(q>0)的等比數(shù)列,設(shè)bn=a2n﹣1+a2n(n=1,2,…).
(1)求出使不等式anan+1+an+1an+2>an+2an+3(n∈N*)成立的q的取值范圍;
(2)求bn和 ,其中Sn=b1+b2+…+bn;
(3)設(shè)r=219.2﹣1,q= ,求數(shù)列{ }的最大項(xiàng)和最小項(xiàng)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,側(cè)棱PA⊥平面ABCD,E為AD的中點(diǎn),BE∥CD,BE⊥AD,PA=AE=BE=2,CD=1;
(1)求二面角C﹣PB﹣E的余弦值;
(2)在線段PE上是否存在點(diǎn)M,使得DM∥平面PBC?若存在,求出點(diǎn)M的位置,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,菱形ABCD的邊長為12,∠BAD=60°,AC與BD交于O點(diǎn).將菱形ABCD沿對角線AC折起,得到三棱錐B﹣ACD,點(diǎn)M是棱BC的中點(diǎn),DM=6 .
(I)求證:平面ODM⊥平面ABC;
(II)求二面角M﹣AD﹣C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個(gè)判斷: ①某校高三一班和高三二班的人數(shù)分別是m,n,某次測試數(shù)學(xué)平均分分別是a,b,則這兩個(gè)班的數(shù)學(xué)平均分為 ;
②10名工人某天生產(chǎn)同一零件的件數(shù)分別是15,17,14,10,15,17,17,16,14,12,設(shè)其平均數(shù)為a,中位數(shù)為b,眾數(shù)為c,則有c>a>b;
③從總體中抽取的樣本為 ,則回歸直線 必過點(diǎn)( )
④已知ξ服從正態(tài)分布N(0,σ2),且P(﹣2≤ξ≤0)=4,則P(ξ>2)=0.2
其中正確的個(gè)數(shù)有( )
A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在(0,+∞)上的函數(shù) ,其中a>0.設(shè)兩曲線y=f(x)與y=g(x)有公共點(diǎn),且在公共點(diǎn)處的切線相同.則b的最大值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=aexlnx+ ,曲線y=f(x)在點(diǎn)(1,f(1))處得切線方程為y=e(x﹣1)+2.
(Ⅰ)求a、b;
(Ⅱ)證明:f(x)>1.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com