18.已知實(shí)數(shù)a,b∈R,若a2-ab+b2=3,則$\frac{{{{(1+ab)}^2}}}{{{a^2}+{b^2}+1}}$的值域?yàn)?[0,\frac{16}{7}]$.

分析 a2-ab+b2=3,可得ab+3=a2+b2≥2|ab|,因此-1≤ab≤3,令ab=t∈[-1,3].$\frac{{{{(1+ab)}^2}}}{{{a^2}+{b^2}+1}}$=$\frac{(1+t)^{2}}{t+4}$=t-2+$\frac{9}{t+4}$=f(t).利用導(dǎo)數(shù)研究其單調(diào)性即可得出.

解答 解:∵a2-ab+b2=3,
∴ab+3=a2+b2≥2|ab|,∴-1≤ab≤3,當(dāng)且僅當(dāng)a=b=±$\sqrt{3}$時(shí)取右邊等號(hào),ab=-1時(shí)取左邊等號(hào).
令ab=t∈[-1,3].
則$\frac{{{{(1+ab)}^2}}}{{{a^2}+{b^2}+1}}$=$\frac{(1+t)^{2}}{t+4}$=t-2+$\frac{9}{t+4}$=f(t).
f′(t)=1-$\frac{9}{(t+4)^{2}}$=$\frac{{t}^{2}+8t+7}{(t+4)^{2}}$=$\frac{(t+1)(t+7)}{(t+4)^{2}}$
∴f(t)在[-1,3]上單調(diào)遞增.
f(-1)=0,f(3)=$\frac{16}{7}$.
∴f(t)∈$[0,\frac{16}{7}]$.
故答案為:$[0,\frac{16}{7}]$.

點(diǎn)評(píng) 本題考查了基本不等式的性質(zhì)、導(dǎo)數(shù)的應(yīng)用,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)$f(x)=x•ln\frac{a}{x}\;\;(a>0)$.
(Ⅰ)若函數(shù)g(x)=ex在x=0處的切線也是函數(shù)f(x)圖象的一條切線,求實(shí)數(shù)a的值;
(Ⅱ)若函數(shù)f(x)的圖象恒在直線x-y+1=0的下方,求實(shí)數(shù)a的取值范圍;
(Ⅲ)若x1,x2∈($\frac{a}{e}$,$\frac{a}{2}$),且x1≠x2,判斷${({{x_1}+{x_2}})^4}$與a2x1x2的大小關(guān)系,并說(shuō)明理由.
注:題目中e=2.71828…是自然對(duì)數(shù)的底數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知x>y>0,且x+y≤2,則$\frac{4}{x+3y}$+$\frac{1}{x-y}$的最小值為$\frac{9}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.sin(-$\frac{2π}{3}$)=(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.-$\frac{{\sqrt{3}}}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知兩個(gè)等差數(shù)列{an}和{bn}的前n項(xiàng)和分別為An和Bn,且$\frac{A_n}{B_n}$=$\frac{6n+54}{n+5}$,則使得$\frac{a_n}{b_n}$為整數(shù)的正整數(shù)n的個(gè)數(shù)是( 。
A.5B.4C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知平面向量$\overrightarrow{a}$=(3,4),$\overrightarrow$=(9,x),$\overrightarrow{c}$=(4,y),且$\overrightarrow{a}$∥$\overrightarrow$,$\overrightarrow{a}$⊥$\overrightarrow{c}$
(1)求$\overrightarrow$與$\overrightarrow{c}$
(2)若$\overrightarrow{m}$=2$\overrightarrow{a}$-$\overrightarrow$,$\overrightarrow{n}$=$\overrightarrow{a}$+$\overrightarrow{c}$,求向量$\overrightarrow{m}$、$\overrightarrow{n}$的夾角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.設(shè)a,b,c為正數(shù),且a+$\frac{2}$+$\frac{c}{3}$=1.則3a2+2bc+2ac+3ab的最大值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知數(shù)列2,$\frac{5}{3}$,$\frac{3}{2}$,$\frac{7}{5}$,$\frac{4}{3}$,…,則$\frac{17}{15}$是該數(shù)列中的第14項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),A(1,1),B(2,0),|$\overrightarrow{OC}$|=1.
(1)求$\overrightarrow{OA}$與$\overrightarrow{OB}$夾角;
(2)若$\overrightarrow{OC}$與$\overrightarrow{OA}$垂直,求點(diǎn)C的坐標(biāo);
(3)求|$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$|的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案