17.已知函數(shù)y=f(x)是(-1,1)上的偶函數(shù),且在區(qū)間(-1,0)是單調(diào)遞增的,A,B,C是銳角△ABC的三個(gè)內(nèi)角,則下列不等式中一定成立的是(  )
A.f(sinA)>f(cosA)B.f(sinA)>f(cosB)C.f(sinC)<f(cosB)D.f(sinC)>f(cosB)

分析 利用函數(shù)的奇偶性與單調(diào)性、銳角三角形的性質(zhì)、正弦函數(shù)的單調(diào)性,判斷各個(gè)選項(xiàng)是否正確,從而得出結(jié)論.

解答 解:由于知函數(shù)y=f(x)是(-1,1)上的偶函數(shù),且在區(qū)間(-1,0)是單調(diào)遞增的,故它在(0,1)上單調(diào)遞減.
對(duì)于A,由于不能確定sinA、sinB的大小,故不能確定f(sinA)與f(sinB)的大小,故A不正確;
對(duì)于B,∵A,B,C是銳角三角形△ABC的三個(gè)內(nèi)角,∴$A+B>\frac{π}{2}$,得$A>\frac{π}{2}-B$,注意到不等式的兩邊都是銳角,
兩邊取正弦,得$sinA>sin(\frac{π}{2}-B)$,即sinA>cosB,又f(x)在(0,1)上是減函數(shù),由sinA>cosB,可得f(sinA)<f(cosB),故B不正確;
對(duì)于C,∵A,B,C是銳角三角形△ABC的三個(gè)內(nèi)角,$B+C>\frac{π}{2}$,得$C>\frac{π}{2}-B$,注意到不等式的兩邊都是銳角,兩邊取余弦,
得$cosC>cos(\frac{π}{2}-B)$,即cosC<sinB;再由f(x)在(0,1)上是減函數(shù),由cosC<sinB,可得f(cosC)<f(sinB),得C正確;
對(duì)于D,由對(duì)B的證明可得f(sinC)<f(cosB),故D不正確;
故選:C.

點(diǎn)評(píng) 本題主要考查函數(shù)的奇偶性與單調(diào)性的應(yīng)用,銳角三角形的性質(zhì),正弦函數(shù)的單調(diào)性,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.設(shè)實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{y≥-2x}\\{y≥x}\\{y+x≤4}\end{array}\right.$,則z=y-4x的取值范圍是[-6,24]z=y-4|x|的取值范圍是[-8,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知集合A={x|x2-2x-3≤0},B={x∈Z|x≤2},則A∩B中的元素個(gè)數(shù)為(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知cos(π-θ)>0,且cos($\frac{π}{2}$+θ)(1-2cos2$\frac{θ}{2}$)<0,則$\frac{sinθ}{|sinθ|}$+$\frac{|cosθ|}{cosθ}$+$\frac{tanθ}{|tanθ|}$的值為( 。
A.-3B.-1C.1D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知f(x)=$\left\{\begin{array}{l}{lg(x+1)+1,}&{x≥0}\\{lg(1-x)+1,}&{x<0}\end{array}\right.$,若不等式f(ax-1)>f(x-2)在[3,4]上有解,則實(shí)數(shù)a的取值范圍為a>$\frac{2}{3}$或a<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.(1)已知函數(shù)f(x)的定義域?yàn)閇-1,5],求函數(shù)f(x-5)的定義域;
(2)已知函數(shù)f(x-1)的定義域是[0,3],求函數(shù)f(x)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.高一某班有學(xué)生56人,現(xiàn)將所有同學(xué)隨機(jī)編號(hào),用系統(tǒng)抽樣的方法抽取一個(gè)容量為8的樣本,則需要將全班同學(xué)分成8組.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的右焦點(diǎn)為F2(1,0),點(diǎn)P(1,$\frac{{\sqrt{2}}}{2}$)在橢圓C上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過(guò)坐標(biāo)原點(diǎn)O的兩條直線EF,MN分別與橢圓C交于E,F(xiàn),M,N四點(diǎn),且直線OE,OM的斜率之積為-$\frac{1}{2}$,求證:四邊形EMFN的面積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=3,|$\overrightarrow$|=$\sqrt{2}$,($\overrightarrow{a}$+$\overrightarrow$)($\overrightarrow{a}$-2$\overrightarrow$)=4.
(1)求$\overrightarrow{a}$•$\overrightarrow$;
(2)求|$\overrightarrow{a}$-$\overrightarrow$|.

查看答案和解析>>

同步練習(xí)冊(cè)答案