【題目】在數(shù)列{an}中,已知a1=2,an+1=3an+2n﹣1.
(1)求證:數(shù)列{an+n}為等比數(shù)列;
(2)記bn=an+(1﹣λ)n,且數(shù)列{bn}的前n項和為Tn , 若T3為數(shù)列{Tn}中的最小項,求λ的取值范圍.

【答案】
(1)證明:∵an+1=3an+2n﹣1,

∴an+1+n+1=3(an+n).

又a1=2,

∴an>0,an+n>0,

∴{an+n}是以3為首項,公比為3的等比數(shù)列


(2)由(1)知道 ,bn=an+(1﹣λ)n,

若T3為數(shù)列{Tn}中的最小項,則對n∈N* 恒成立,

即3n+1﹣81≥(n2+n﹣12)λ對n∈N*恒成立

1°當(dāng)n=1時,有 ;

2°當(dāng)n=2時,有T2≥T3λ≥9;

3°當(dāng)n≥4時,n2+n﹣12=(n+4)(n﹣3)>0恒成立,

n≥4恒成立.

,則 n≥4恒成立,

在n≥4時為單調(diào)遞增數(shù)列.

∴λ≤f(4),即

綜上,


【解析】(1)由an+1=3an+2n﹣1,整理得:an+1+n+1=3(an+n).由an+n>0, ,可知{an+n}是以3為首項,公比為3的等比數(shù)列;(2)由(1)求得數(shù)列{bn}通項公式及前n項和為Tn , 由T3為數(shù)列{Tn}中的最小項,則對n∈N* 恒成立,分類分別求得當(dāng)n=1時和當(dāng)n=2λ的取值范圍, 當(dāng)n≥4時, ,利用做差法,根據(jù)函數(shù)的單調(diào)性,即可求得λ的取值范圍.
【考點精析】關(guān)于本題考查的數(shù)列的前n項和和數(shù)列的通項公式,需要了解數(shù)列{an}的前n項和sn與通項an的關(guān)系;如果數(shù)列an的第n項與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線lx+2y-2=0.試求:

1)點P-2-1)關(guān)于直線l的對稱點坐標(biāo);

2)直線l關(guān)于點(11)對稱的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(a為常數(shù))的圖象與軸交于點,曲線在點處的切線斜率為

(1)的值及函數(shù)的極值;

(2)證明:當(dāng)時,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校有,,四件作品參加航模類作品比賽.已知這四件作品中恰有兩件獲獎.在結(jié)果揭曉前,甲、乙、丙、丁四位同學(xué)對這四件參賽作品的獲獎情況預(yù)測如下:

甲說:“同時獲獎”;

乙說:“、不可能同時獲獎”;

丙說:“獲獎”;

丁說:“至少一件獲獎”.

如果以上四位同學(xué)中有且只有二位同學(xué)的預(yù)測是正確的,則獲獎的作品是( )

A. 作品與作品 B. 作品與作品 C. 作品與作品 D. 作品與作品

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知立方和公式:

求函數(shù)的值域;

求函數(shù)的值域;

若任意實數(shù)x,不等式恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在下列命題中,①的一個充要條件是與它的共軛復(fù)數(shù)相等:

②利用獨立性檢驗來考查兩個分類變量,是否有關(guān)系,當(dāng)隨機(jī)變量的觀測值值越大,“有關(guān)系”成立的可能性越大;

③在回歸分析模型中,若相關(guān)指數(shù)越大,則殘差平方和越小,模型的擬合效果越好;

④若,是兩個相等的實數(shù),則是純虛數(shù);

⑤某校高三共有個班,班有人,班有人,班有人,由此推測各班都超過人,這個推理過程是演繹推理.

其中真命題的序號為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】國家質(zhì)量監(jiān)督檢驗檢疫局于2004531日發(fā)布了新的車輛駕駛?cè)藛T血液、呼氣酒精含量閥值與檢驗國家標(biāo)準(zhǔn)新標(biāo)準(zhǔn)規(guī)定,車輛駕駛?cè)藛T血液中的酒精含量大于或等于20毫克百毫升,小于80毫克百毫升為飲酒駕車,血液中的酒精含量大于或等于80毫克百毫升為醉酒駕車經(jīng)過反復(fù)試驗,喝一瓶啤酒后酒精在人體血液中的變化規(guī)律的“散點圖”如圖:

該函數(shù)近似模型如下:,又已知剛好過1小時時測得酒精含量值為毫克百毫升根據(jù)上述條件,回答以下問題:

試計算喝1瓶啤酒多少小時血液中的酒精含量達(dá)到最大值?最大值是多少?

試計算喝一瓶啤酒后多少小時后才可以駕車?時間以整小時計算

參考數(shù)據(jù):,,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,已知,上,且平面.

(Ⅰ)求證:平面;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為研究某藥品的療效,選取若干名志愿者進(jìn)行臨床試驗,所有志愿者的舒張壓數(shù)據(jù)(單位:)的分組區(qū)間為,,,將其按從左到右的順序分別編號為第一組,第二組,......,第五組.如圖是根據(jù)試驗數(shù)據(jù)制成的頻率分布直方圖.已知第一組與第二組共有人,第三組中沒有療效的有人,則第三組中有療效的人數(shù)為( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案