3.關(guān)于x的不等式|x-2|-|x-4|<a的解集非空,則實(shí)數(shù)a的取值范圍為(-2,+∞).

分析 |x-2|-|x-4|=$\left\{\begin{array}{l}{2,x>4}\\{2x-6,2≤x≤4}\\{-2,x<2}\end{array}\right.$,可得|x-2|-|x-4|∈[-2,2],根據(jù)關(guān)于x的不等式f(x)=|x-2|-|x-4|<a的解集非空,可得:a>[f(x)]min

解答 解:|x-2|-|x-4|=$\left\{\begin{array}{l}{2,x>4}\\{2x-6,2≤x≤4}\\{-2,x<2}\end{array}\right.$,
∴|x-2|-|x-4|∈[-2,2],
∵關(guān)于x的不等式|x-2|-|x-4|<a的解集非空,
∴a>-2.
∴實(shí)數(shù)a的取值范圍為(-2,+∞).
故答案為:(-2,+∞).

點(diǎn)評(píng) 本題考查絕對(duì)值不等式的解法、分類討論方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知函數(shù)f(x)是定義R上的偶函數(shù),且當(dāng)x∈[0,+∞)時(shí),函數(shù)f(x)是單調(diào)遞減函數(shù),則f(log25),f(log3$\frac{1}{5}$),f(log53)大小關(guān)系是(  )
A.f(log3$\frac{1}{5}$)<f(log53)<f(log25)B.f(log3$\frac{1}{5}$)<f(log25)<f(log53)
C.f(log53)<f(log3$\frac{1}{5}$)<f(log25)D.f(log25)<f(log3$\frac{1}{5}$)<f(log53)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.在△ABC中,有關(guān)系:1+cos2A+sinB•sinC=cos2B+cos2C,則角A的大小為$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.在等差數(shù)列中,a1=25,d=-4,前n項(xiàng)的和為Sn,則( 。
A.Sn最大值為91B.Sn最小值為91C.Sn最大值為87D.Sn最小值為87

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.如圖,將平面直角坐標(biāo)系的格點(diǎn)(橫、縱坐標(biāo)均為整數(shù)的點(diǎn))按如圖規(guī)則標(biāo)上數(shù)字標(biāo)簽:原點(diǎn)處標(biāo)0,點(diǎn)(1,0)處標(biāo)1,點(diǎn)(1,-1)處標(biāo)2,點(diǎn)(0,-1)處標(biāo)3,點(diǎn)(-1,-1)處標(biāo)4,點(diǎn)(-1,0)標(biāo)5,點(diǎn)(-1,1)處標(biāo)6,點(diǎn)(0,1)處標(biāo)7,以此類推,經(jīng)歸納可知標(biāo)注2013的格點(diǎn)的坐標(biāo)為(  )
A.(11,22)B.(12,23)C.(23,23)D.(23,22)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知a>0,b>0,且a+b=1,求$\frac{2}{a}$+$\frac{4a}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.若得到y(tǒng)=sin(2x-$\frac{π}{3}$)的圖象,可將y=cos(2x-$\frac{π}{4}$)的圖象( 。
A.向左平移$\frac{7π}{12}$個(gè)單位得到B.向右平移$\frac{7π}{12}$個(gè)單位得到
C.向左平移$\frac{7π}{24}$個(gè)單位得到D.向右平移$\frac{7π}{24}$個(gè)單位得到

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.一個(gè)口袋內(nèi)有3個(gè)不同的紅球,5個(gè)不同的白球.
(1)從中任取3個(gè)球,紅球的個(gè)數(shù)不少于白球的個(gè)數(shù)的取法有多少種?
(2)若取一個(gè)紅球記2分,取一個(gè)白球記1分,從中任取4個(gè)球,則使總分不超過(guò)6的取法有多少種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.△ABC中,AB=2,AC=$\sqrt{2}$,∠A=135°,MN是BC邊的兩個(gè)三等分點(diǎn),求cos<$\overrightarrow{AM}$,$\overrightarrow{AN}$>.

查看答案和解析>>

同步練習(xí)冊(cè)答案