【題目】如圖,設(shè)為單位圓上逆時針均勻分布的六個點,現(xiàn)從這六個點中任選其中三個不同點構(gòu)成一個三角形,記該三角形的面積為隨機(jī)變量.

(1)求的概率;

(2)求的分布列及數(shù)學(xué)期望 .

【答案】(1)(2)見解析

【解析】試題分析:(1)由排列組合可求得從六外點任選三個不同點構(gòu)成一個三角形的所有選法,其中面積為的是一個角為的直角三角形,由古典概型可求得概率;(2)先寫出的所有可能取值,再求出所對應(yīng)的概率,可寫出的分布列,進(jìn)一步求出數(shù)學(xué)期望.

試題解析:(1)從六個點任選三個不同點構(gòu)成一個三角形共有種不同選法,

其中的為有一個是的直角三角形(如: )共種,

所以.

(2)的所有可能取值為,

的為頂角是的等腰三角形(如),共種,所以,

的為等邊三角形(如: )共種,所以

又由(1),故的分布列為:

所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖幾何體是四棱錐,為正三角形, ,且.

(1)求證: 平面平面;

(2)是棱的中點,求證:平面;

(3)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

(1)若,求曲線處的切線方程;

(2)若無零點,求實數(shù)的取值范圍;

(3)若有兩個相異零點,,求證

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商店為了吸引顧客,設(shè)計了一個摸球小游戲,顧客從裝有1個紅球,1個白球,3個黑球的袋中一次隨機(jī)的摸2個球,設(shè)計獎勵方式如下表:

結(jié)果

獎勵

1紅1白

10元

1紅1黑

5元

2黑

2元

1白1黑

不獲獎

(1)某顧客在一次摸球中獲得獎勵X元,求X的概率分布表與數(shù)學(xué)期望;

(2)某顧客參與兩次摸球,求他能中獎的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,角所對的邊分別為,且

(1)求的值;

(2)若,求的面積的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠擬生產(chǎn)甲、乙兩種適銷產(chǎn)品,每件銷售收入分別為3000元,2000元.甲、乙產(chǎn)品都需要在A、B兩種設(shè)備上加工,在每臺A、B設(shè)備上加工一件甲所需工時分別為1,2,加工一件乙設(shè)備所需工時分別為2,1.A、B兩種設(shè)備每月有效使用臺時數(shù)分別為400和500,分別用表示計劃每月生產(chǎn)甲,乙產(chǎn)品的件數(shù).

(Ⅰ)用列出滿足生產(chǎn)條件的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;

(Ⅱ)問分別生產(chǎn)甲、乙兩種產(chǎn)品各多少件,可使收入最大?并求出最大收入.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的短軸長為,離心率

(1)求橢圓的標(biāo)準(zhǔn)方程

(2)若分別是橢圓的左、右焦點,過的直線與橢圓交于不同的兩點,求的內(nèi)切圓半徑的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將一塊圓心角為120°,半徑為20cm的扇形鋼片裁出一塊矩形鋼片,如圖有兩種裁法:使矩形一邊在扇形的一條半徑OA上,或者讓矩形一邊與弦AB平行,試問哪種裁法能使截得的矩形鋼片面積最大?并求出這個最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=|2x-1|+|2x-a|+a,x∈R.

(1)當(dāng)a=3時,求不等式f(x)>7的解集;

(2)對任意x∈R恒有f(x)≥3,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案