3.已知數(shù)列{an}的前n項和為Sn,對任意n∈N+,Sn=(-1)nan+$\frac{1}{{2}^{n}}$+n-3且(t-an+1)(t-an)<0恒成立,則實數(shù)t的取值范圍是(-$\frac{3}{4}$,$\frac{11}{4}$).

分析 由數(shù)列遞推式求出首項,寫出n≥2時的遞推式,作差后對n分偶數(shù)和奇數(shù)討論,求出數(shù)列通項公式,可得函數(shù)an=$\frac{1}{{2}^{n+1}}$-1(n為正奇數(shù))為減函數(shù),最大值為a1=-$\frac{3}{4}$,函數(shù)an=3-$\frac{1}{{2}^{n}}$(n為正偶數(shù))為增函數(shù),最小值為a2=$\frac{11}{4}$,再由(t-an+1)(t-an)<0恒成立求得實數(shù)t的取值范圍.

解答 解:由Sn=(-1)nan+$\frac{1}{{2}^{n}}$+n-3,得a1=-$\frac{3}{4}$;
當(dāng)n≥2時,an=Sn-Sn-1=(-1)nan+$\frac{1}{{2}^{n}}$+n-3-(-1)n-1an-1-$\frac{1}{{2}^{n-1}}$-(n-1)+3
=(-1)nan+(-1)nan-1-$\frac{1}{{2}^{n}}$+1,
若n為偶數(shù),則an-1=$\frac{1}{{2}^{n}}$-1,∴an=$\frac{1}{{2}^{n+1}}$-1(n為正奇數(shù));
若n為奇數(shù),則an-1=-2an-$\frac{1}{{2}^{n}}$+1=2($\frac{1}{{2}^{n+1}}$-1)-$\frac{1}{{2}^{n}}$+1=3-$\frac{1}{{2}^{n-1}}$,
∴an=3-$\frac{1}{{2}^{n}}$(n為正偶數(shù)).
函數(shù)an=$\frac{1}{{2}^{n+1}}$-1(n為正奇數(shù))為減函數(shù),最大值為a1=-$\frac{3}{4}$,
函數(shù)an=3-$\frac{1}{{2}^{n}}$(n為正偶數(shù))為增函數(shù),最小值為a2=$\frac{11}{4}$,
若(t-an+1)(t-an)<0恒成立,
則a1<t<a2,即-$\frac{3}{4}$<t<$\frac{11}{4}$.
故答案為:(-$\frac{3}{4}$,$\frac{11}{4}$).

點(diǎn)評 本題考查數(shù)列遞推式,考查了數(shù)列通項公式的求法,體現(xiàn)了分類討論的數(shù)學(xué)思想方法和數(shù)學(xué)轉(zhuǎn)化思想方法,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.解方程:
1og4(3-x)+log${\;}_{\frac{1}{4}}$(3+x)=log4(1-x)+log${\;}_{\frac{1}{4}}$(2x+1);(2)log${\;}_{\frac{2}{7}}$(8x-3x2)≤log${\;}_{\frac{2}{7}}$(2x2-5x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.為了研究數(shù)學(xué)、物理學(xué)習(xí)成績的關(guān)聯(lián)性,某位老師從一次考試中隨機(jī)抽取30名學(xué)生,將數(shù)學(xué)、物理成績進(jìn)行統(tǒng)計,所得數(shù)據(jù)如表,其中數(shù)學(xué)成績在120分以上(含120分)為優(yōu)秀,物理成績在80分以上(含80分)為優(yōu)秀.
編號數(shù)學(xué)成績xi物理成績yi編號數(shù)學(xué)成績xi物理成績yi編號數(shù)學(xué)成績xi物理成績yi
11088211124802112264
21127612136862213682
31307813127832311484
4132911480732412180
5108681513881258852
61408816141912614283
71439217109852712569
8997218100802813590
9106841992732911282
101207720132823012892
(1)根據(jù)表格完成下面2×2的列聯(lián)表:
數(shù)學(xué)成績不優(yōu)秀數(shù)學(xué)成績優(yōu)秀合計
物理成績不優(yōu)秀
物理成績優(yōu)秀
合計
(2)若這一次考試物理成績y關(guān)于數(shù)學(xué)成績x的回歸方程為$\widehat{y}$=$\widehat$x+$\widehat{a}$,
由圖中數(shù)據(jù)計算成$\overline{x}$=120,$\overline{y}$=80,$\sum_{i=1}^{n}$(xi-$\overline{x}$)(yi-$\overline{y}$)=2736,$\sum_{i=1}^{n}$(xi-$\overline{x}$)2=8480,若y關(guān)于x的回歸方程,據(jù)此估計,數(shù)學(xué)成績每提高10分,物理成績約提高多少分?(精確到0.1).
附1:獨(dú)立性檢驗:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.150.100.0500.010
k2.0722.7063.8416.635
附2:若(x1,y1),(x2,y2),…(xn,yn)為樣本點(diǎn),$\widehat{y}$=$\widehat$x+$\widehat{a}$為回歸直線,
則$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如圖1,將水平放置且邊長為1的正方形ABCD沿對角線BD折疊,使C到C′位置.折疊后三棱錐C′-ABD的俯視圖如圖2所示,那么其主視圖是( 。
A.等邊三角形B.直角三角形
C.兩腰長都為$\frac{{\sqrt{3}}}{2}$的等腰三角形D.兩腰長都為$\frac{{\sqrt{2}}}{2}$的等腰三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知直線m,n和平面α,m?α,n∥m,那么“n?α”是“m∥α”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.某旅游為了解2015年國慶節(jié)期間參加某境外旅游線路的游客的人均購物消費(fèi)情況,隨機(jī)對50人做了問卷調(diào)查,得如下頻數(shù)分布表:
人均購物消費(fèi)情況[0,2000](2000,4000](4000,6000](6000,8000](8000,10000]
額數(shù)1520933
(1)做出這些數(shù)據(jù)的頻率分布直方圖并估計次境外旅游線路游客的人均購物的消費(fèi)平均值;
(2)在調(diào)查問卷中有一項是“您會資助失學(xué)兒童的金額?”,調(diào)查情況如表,請補(bǔ)全如表,并說明是否有95%以上的把握認(rèn)為資助數(shù)額多于或少于500元和自身購物是否到4000元有關(guān)?
人均購物消費(fèi)不超過4000元人均購物消費(fèi)超過4000元合計
資助超過500元30
資助不超過500元6
合計
附:臨界值表參考公式:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知某商品進(jìn)價為26元,若要求利潤不小于30%,則銷售價至少為(精確到元)(  )
A.33元B.34元C.35元D.36元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知命題p:若奇函數(shù)y=f(x)(x∈R)滿足f(x+2)=f(x),則f(6)=0;命題q:不等式log${\;}_{\frac{1}{2}}$2x-1>-1的解集為{x|x<2},則下列結(jié)論錯誤的是( 。
A.p∧q真B.p∨q真C.(¬p)∧q為假D.(¬p)∧(¬q)為真

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)集合A={x|-1≤x≤1},B={x|x2-2x<0},則A∩B=( 。
A.{x|-1≤x<2}B.{x|0<x≤1}C.{x|0<x<1}D.{x|1≤x<2}

查看答案和解析>>

同步練習(xí)冊答案