【題目】已知四棱錐,底面為菱形,,上的點(diǎn),過的平面分別交,于點(diǎn),,且平面

(1)證明:;

(2)當(dāng)的中點(diǎn),與平面所成的角為,求與平面所成角的正弦值.

【答案】(1)見證明(2)

【解析】

1)連結(jié)、,連結(jié),先證明平面,可得,再利用線面平行的性質(zhì)定理證明,從而可得結(jié)論;(2)利用(1)可證明平面,利用與平面所成的角為求出線段間的等量關(guān)系,以,,分別為,,軸,建立空間直角坐標(biāo)系,求出,再利用向量垂直數(shù)量積為零列方程求出平面的法向量,由空間向量夾角余弦公式可得結(jié)果.

(1)

連結(jié),連結(jié)

因?yàn)椋?/span>為菱形,所以,,

因?yàn)椋?/span>,所以,,

因?yàn)椋?/span>平面,

所以,平面,

因?yàn)椋?/span>平面,所以,,

因?yàn)椋?/span>平面,

且平面平面

所以,

所以,

(2)

由(1)知,

因?yàn)?/span>,且的中點(diǎn),

所以,,所以,平面,

所以與平面所成的角為,所以,

所以,,因?yàn)椋?/span>,所以,.

,分別為,軸,如圖所示建立空間直角坐標(biāo)系

,所以,,,,

所以, ,,

記平面的法向量為,所以,

,解得,,所以,,

與平面所成角為,所以,.

所以,與平面所成角的正弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知空間幾何體中,均為邊長(zhǎng)為的等邊三角形,為腰長(zhǎng)為的等腰三角形,平面平面,平面平面.

(1)試在平面內(nèi)作一條直線,使直線上任意一點(diǎn)的連線均與平面平行,并給出詳細(xì)證明

(2)求點(diǎn)到平面的距離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知函數(shù).

1)當(dāng)時(shí),求的單調(diào)區(qū)間和極值;

2)討論的零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知?jiǎng)訄A過定點(diǎn),它與軸相交所得的弦的長(zhǎng)為,則滿足要求的動(dòng)圓其半徑的最小值是_____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直三棱柱 的中點(diǎn).

1證明 平面;

2 ,求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】ABC的內(nèi)角A,B,C的對(duì)邊分別為a,bc,已知△ABC的面積為

(1)求sinBsinC;

(2)若6cosBcosC=1,a=3,求△ABC的周長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

在直角坐標(biāo)系中,曲線:,為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,曲線.

(1)說明是哪一種曲線,并將的方程化為極坐標(biāo)方程;

(2)若直線的方程為,設(shè)的交點(diǎn)為,的交點(diǎn)為,,若的面積為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校為增加應(yīng)屆畢業(yè)生就業(yè)機(jī)會(huì),每年根據(jù)應(yīng)屆畢業(yè)生的綜合素質(zhì)和學(xué)業(yè)成績(jī)對(duì)學(xué)生進(jìn)行綜合評(píng)估,已知某年度參與評(píng)估的畢業(yè)生共有2000名,其評(píng)估成績(jī)近似的服從正態(tài)分布.現(xiàn)隨機(jī)抽取了100名畢業(yè)生的評(píng)估成績(jī)作為樣本,并把樣本數(shù)據(jù)進(jìn)行了分組,繪制了頻率分布直方圖:

(1)求樣本平均數(shù)和樣本方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

(2)若學(xué)校規(guī)定評(píng)估成績(jī)超過分的畢業(yè)生可參加三家公司的面試.

(ⅰ)用樣本平均數(shù)作為的估計(jì)值,用樣本標(biāo)準(zhǔn)差作為的估計(jì)值,請(qǐng)利用估計(jì)值判斷這2000名畢業(yè)生中,能夠參加三家公司面試的人數(shù);

(ⅱ)若三家公司每家都提供甲、乙、丙三個(gè)崗位,崗位工資表如下:

公司

甲崗位

乙崗位

丙崗位

9600

6400

5200

9800

7200

5400

10000

6000

5000

李華同學(xué)取得了三個(gè)公司的面試機(jī)會(huì),經(jīng)過評(píng)估,李華在三個(gè)公司甲、乙、丙三個(gè)崗位的面試成功的概率均為,李華準(zhǔn)備依次從三家公司進(jìn)行面試選崗,公司規(guī)定:面試成功必須當(dāng)場(chǎng)選崗,且只有一次機(jī)會(huì).李華在某公司選崗時(shí),若以該崗位工資與未進(jìn)行面試公司的工資期望作為抉擇依據(jù),問李華可以選擇公司的哪些崗位?

并說明理由.

附:,若隨機(jī)變量,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)有兩個(gè)零點(diǎn),則下列說法錯(cuò)誤的是(

A.B.C.有極大值點(diǎn),且D.

查看答案和解析>>

同步練習(xí)冊(cè)答案