F1,F(xiàn)2是橢圓
x2
4
+y2=1
的左、右焦點,點P在橢圓上運動,則|
PF1
PF2
|
的最大值是( 。
A、4B、5C、2D、1
分析:設(shè)
PF1
=m,
PF2
=n,根據(jù)橢圓的定義可知m+n=2a=4,進而根據(jù)均值不等式求得m•n的最大值.
解答:解:設(shè)
PF1
=m,
PF2
=n,
根據(jù)橢圓的定義可知m+n=2a=4
∴m•n≤
(m+n)2
4
=4
故選A.
點評:本題主要考查了橢圓的應(yīng)用及基本不等式的求最值.考查了學(xué)生綜合運用所學(xué)知識的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

F1、F2是橢圓 x2+2y2=2的兩個焦點,過F2作傾斜角為45°的弦AB,則△ABF1的面積是( 。
A、
2
3
3
B、
4
2
3
C、
4
3
D、
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•海淀區(qū)二模)已知點F1、F2是橢圓x2+2y2=2的兩個焦點,點P是該橢圓上的一個動點,那么|
PF1
+
PF2
|
的最小值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1、F2是橢圓
x
2
 
a
2
 
+
y
2
 
b
2
 
=1(a>b>0)
的左、右焦點,P為橢圓短軸的一個端點,且△F1PF2為正三角形,則該橢圓的離心率為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1,F(xiàn)2是橢圓x2+2y2=4的焦點,B(0,
2
)
,則
BF1
BF2
的值為
0
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1、F2是橢圓
x
2
 
a
2
 
+
y
2
 
b
2
 
=1(a>b>0)
的左、右焦點,P為橢圓上一個點,∠F1PF2=60°,|F1F2|為|PF1|與|PF2|的等比中項,則該橢圓的離心率為( 。

查看答案和解析>>

同步練習(xí)冊答案