精英家教網 > 高中數學 > 題目詳情
8.設函數f(x)=4x2+ax+2,不等式f(x)<c的解集為(-1,2).
(1)求a的值;
(2)解不等式$\frac{4x+m}{{f(x)-4{x^2}}}>0$.

分析 (1)利用韋達定理,建立方程,即可求a的值;
(2)不等式轉化為(4x+m)(-4x+2)>0,分類討論,解不等式.

解答 解:(1)∵函數f(x)=4x2+ax+2,不等式f(x)<c的解集為(-1,2),
∴-1+2=-$\frac{a}{4}$,∴a=-4;
(2)不等式轉化為(4x+m)(-4x+2)>0,
可得m=-2,不等式的解集為∅;
m<-2,不等式的解集為{x|$\frac{1}{2}<x<-\frac{m}{4}$};
m>-2,不等式的解集為{x|-$\frac{m}{4}<x<\frac{1}{2}$}.

點評 本題考查不等式的解法,考查分類討論的數學思想,考查學生分析解決問題的能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

18.集合{x|x2=1}的子集個數是( 。
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

19.若函數f(x)滿足$f(x)=\frac{1}{3}{x^3}-f'(1)•{x^2}-x$,則f'(1)的值為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

16.設關于x的不等式ax2+2|x-a|-20<0的解集為A,試探究是否存在自然數a,使得不等式x2+x-2<0與|2x-1|<x+2的解都屬于A,若不存在,說明理由.若存在,請求滿足條件的a的所有的值.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

3.在△ABC,已知acosA=bcosB,則△ABC的形狀是(  )
A.等腰三角形B.直角三角形
C.等腰直角三角形D.等腰三角形或直角三角形

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

13.下列說法正確的是( 。
A.經過空間內的三個點有且只有一個平面
B.如果直線l上有一個點不在平面α內,那么直線上所有點都不在平面α內
C.四棱錐的四個側面可能都是直角三角形
D.用一個平面截棱錐,得到的幾何體一定是一個棱錐和一個棱臺

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

20.已知數列{an}滿足a1a2a3…an=2${\;}^{{n}^{2}}$(n∈N*),且對任意n∈N*都有$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$<t,則t的取值范圍為(  )
A.($\frac{1}{3}$,+∞)B.[$\frac{1}{3}$,+∞)C.($\frac{2}{3}$,+∞)D.[$\frac{2}{3}$,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

17.空間有10個點,其中有5個交點共面(除此之外再無4點共面),以每4個點為頂點作一個四面體,一共可作205個四面體(用數字作答).

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

18.若函數$f(x)=\frac{x}{1+|x|}-m$有零點,則實數m的取值范圍是  (-1,1).

查看答案和解析>>

同步練習冊答案