12.$f(x)=\frac{1}{2}{x^2}-ax+alnx$有兩個(gè)極值點(diǎn),則a的范圍是(  )
A.a<0B.a>4C.a>4或 a<0D.以上都不對(duì)

分析 求出函數(shù)的導(dǎo)數(shù),結(jié)合二次函數(shù)的性質(zhì)得到關(guān)于a的不等式組,解出即可.

解答 解:f(x)的定義域是(0,+∞),
f′(x)=x-a+$\frac{a}{x}$=$\frac{{x}^{2}-ax+a}{x}$,
若函數(shù)f(x)有兩個(gè)不同的極值點(diǎn),
則g(x)=x2-ax+a在(0,+∞)由2個(gè)不同的實(shí)數(shù)根,
故$\left\{\begin{array}{l}{△{=a}^{2}-4a>0}\\{{x}_{1}=\frac{a-\sqrt{{a}^{2}-4a}}{2}>0}\end{array}\right.$,
解得:a>4,
故選:B.

點(diǎn)評(píng) 不同考查了函數(shù)的極值問題,考查導(dǎo)數(shù)的應(yīng)用以及二次函數(shù)的性質(zhì),是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)函數(shù)f(x)=|x-a|+|2x-a|(a<0).
(1)證明:f(x)+f(-$\frac{1}{x}$)≥6;
(2)若不等式f(x)<$\frac{1}{2}$的解集為非空集,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.?dāng)?shù)列{an}的前n項(xiàng)和Sn,a1=2,an+1-an=3,若Sn=57,則n=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.正四棱錐底面邊長(zhǎng)為a,側(cè)棱長(zhǎng)為a,則其表面積為$(\sqrt{3}+1){a}^{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=lnx-f′(1)x+ln$\frac{e}{2}$,g(x)=$\frac{3x}{2}$-$\frac{2}{x}$-f(x).
(1)求f(x)的單調(diào)區(qū)間.
(2)設(shè)函數(shù)h(x)=x2-x+m,若存在x1∈(0,1],對(duì)任意的x2∈[1,2],總有g(shù)(x1)≥h(x2)成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)$f(x)=\frac{x}{lnx}-ax$.
(1)a=1,x>1時(shí),求證:$f(x)•\frac{x-1}{x}<\frac{3-x}{2}$;
(2)求證:$\sum_{k=1}^n{\frac{2}{2k+1}}≤\frac{2}{3}+ln\frac{n+1}{2}\;(n∈N,n≥2)$;
(3)若$?{x_1},{x_2}∈[{e,{e^2}}]$,使f(x1)-f′(x2)≤a成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在△ABC中,角A,B,C的對(duì)邊邊長(zhǎng)分別為a,b,c且滿足csinA=acosC,則$\sqrt{3}$sinA-cos(${B+\frac{π}{4}}$)的取值范圍為(1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=k(x+1)2-x,g(x)=2x-k•2-x(k∈R且k≠0)
(1)若f(1)=23,求函數(shù)g(x)在區(qū)間[0,1]上的值域;
(2)當(dāng)-3<g(1)<3時(shí),函數(shù)f(x)在區(qū)間[0,2]上的最小值大于h(x)=$\frac{2x}{{x}^{2}+1}$+$\frac{{x}^{2}+1}{x}$在(0,+∞]上的最小值,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)y=3-x(-2≤x≤1)的值域是( 。
A.[3,9]B.[$\frac{1}{3}$,9]C.[$\frac{1}{3}$,3]D.[$\frac{1}{9}$,$\frac{1}{3}$]

查看答案和解析>>

同步練習(xí)冊(cè)答案