分析 設(shè)m=a+bi,得到(4x2+ax+4)+(3x2+bx-3)i=0,解出a,b的值,從而求出|m|的最小值即可.
解答 解:設(shè)m=a+bi,
∵(4+3i)x2+(a+bi)x+4-3i=0,
∴(4x2+ax+4)+(3x2+bx-3)i=0,
∴$\left\{\begin{array}{l}{{4x}^{2}+ax+4=0}\\{{3x}^{2}+bx-3=0}\end{array}\right.$,
∴a=-$\frac{4{(x}^{2}+1)}{x}$,b=-$\frac{3{(x}^{2}-1)}{x}$,
∴|m|=$\sqrt{{[-\frac{4{(x}^{2}+1)}{x}]}^{2}{+[-\frac{3{(x}^{2}-1)}{x}]}^{2}}$=$\sqrt{2{5x}^{2}+\frac{25}{{x}^{2}}+14}$≥$\sqrt{2•\sqrt{2{5x}^{2}•\frac{25}{{x}^{2}}}+14}$=$\sqrt{64}$=8,
當(dāng)且僅當(dāng)x2=1時“=”成立,
故答案為:8.
點評 本題考查了復(fù)數(shù)的運算性質(zhì),考查解方程組問題,是一道基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 4$\sqrt{6}$ | C. | 8 | D. | 8$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 向左平移$\frac{π}{4}$ | B. | 向右平移$\frac{π}{4}$ | C. | 向右平移$\frac{π}{8}$ | D. | 向左平移$\frac{π}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 7 | C. | -1 | D. | -4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com