如圖,橢圓的焦點(diǎn)在x軸上,左右頂點(diǎn)分別為,上頂點(diǎn)為B,拋物線分別以A,B為焦點(diǎn),其頂點(diǎn)均為坐標(biāo)原點(diǎn)O,相交于直線上一點(diǎn)P.
(1)求橢圓C及拋物線的方程;
(2)若動(dòng)直線與直線OP垂直,且與橢圓C交于不同的兩點(diǎn)M,N,已知點(diǎn),求的最小值.

(1)橢圓C:,拋物線C1拋物線C2;(2).

解析試題分析:(1)由題意可得A(a,0),B(0,),而拋物線C1,C2分別是以A、B為焦點(diǎn),∴可求得C2的解析式:,設(shè)C1的解析式為,再由C1與C2的交點(diǎn)在直線y=x上,;(2)直線OP的斜率為,所以直線的斜率為,設(shè)直線方程為,
設(shè)M()、N(),將直線方程與橢圓方程聯(lián)立,利用解析幾何中處理直線與圓錐曲線中常用的“設(shè)而不求”思想,可以得到,結(jié)合韋達(dá)定理,即可得到的最值.
(1)由題意可得A(a,0),B(0,),故拋物線C1的方程可設(shè)為,C2的方程為    1分
  得    3分
∴橢圓C:,拋物線C1拋物線C2 5分;                              (2)由(1)知,直線OP的斜率為,所以直線的斜率為,設(shè)直線方程為
,整理得
設(shè)M()、N(),則    7分
因?yàn)閯?dòng)直線與橢圓C交于不同兩點(diǎn),所以
解得    8分
,
,
  11分
,所以當(dāng)時(shí),取得最小值,
其最小值等于    13分
考點(diǎn):1、圓錐曲線解析式的求解;2、直線與橢圓相交綜合.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

橢圓的對稱中心在坐標(biāo)原點(diǎn),一個(gè)頂點(diǎn)為,右焦點(diǎn)F與點(diǎn) 的距離為2。
(1)求橢圓的方程;
(2)是否存在斜率 的直線使直線與橢圓相交于不同的兩點(diǎn)M,N滿足,若存在,求直線l的方程;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知點(diǎn)A,橢圓E:的離心率為;F是橢圓E的右焦點(diǎn),直線AF的斜率為,O為坐標(biāo)原點(diǎn)
(I)求E的方程;
(II)設(shè)過點(diǎn)A的動(dòng)直線與E 相交于P,Q兩點(diǎn)。當(dāng)的面積最大時(shí),求的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
已知拋物線的焦點(diǎn)為,上異于原點(diǎn)的任意一點(diǎn),過點(diǎn)的直線于另一點(diǎn),交軸的正半軸于點(diǎn),且有.當(dāng)點(diǎn)的橫坐標(biāo)為時(shí),為正三角形.
(Ⅰ)求的方程;
(Ⅱ)若直線,且有且只有一個(gè)公共點(diǎn),
(ⅰ)證明直線過定點(diǎn),并求出定點(diǎn)坐標(biāo);
(ⅱ)的面積是否存在最小值?若存在,請求出最小值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,設(shè)橢圓動(dòng)直線與橢圓只有一個(gè)公共點(diǎn),且點(diǎn)在第一象限.
(1)已知直線的斜率為,用表示點(diǎn)的坐標(biāo);
(2)若過原點(diǎn)的直線垂直,證明:點(diǎn)到直線的距離的最大值為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知P是圓M:x2+y2+4x+4-4m2=0(m>0且m≠2)上任意一點(diǎn),點(diǎn)N的坐標(biāo)為(2,0),線段NP的垂直平分線交直線MP于點(diǎn)Q,當(dāng)點(diǎn)P在圓M上運(yùn)動(dòng)時(shí),點(diǎn)Q的軌跡為C.
(1)求出軌跡C的方程,并討論曲線C的形狀;
(2)當(dāng)m=時(shí),在x軸上是否存在一定點(diǎn)E,使得對曲線C的任意一條過E的弦AB,為定值?若存在,求出定點(diǎn)和定值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)拋物線的焦點(diǎn)為,點(diǎn),線段的中點(diǎn)在拋物線上.設(shè)動(dòng)直線與拋物線相切于點(diǎn),且與拋物線的準(zhǔn)線相交于點(diǎn),以為直徑的圓記為圓
(1)求的值;
(2)證明:圓軸必有公共點(diǎn);
(3)在坐標(biāo)平面上是否存在定點(diǎn),使得圓恒過點(diǎn)?若存在,求出的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的右焦點(diǎn)為,離心率,是橢圓上的動(dòng)點(diǎn).
(1)求橢圓標(biāo)準(zhǔn)方程;
(2)若直線的斜率乘積,動(dòng)點(diǎn)滿足,(其中實(shí)數(shù)為常數(shù)).問是否存在兩個(gè)定點(diǎn),使得?若存在,求的坐標(biāo)及的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的短半軸長為半徑的圓與直線相切.
(1)求橢圓的方程;
(2)若過點(diǎn)(2,0)的直線與橢圓相交于兩點(diǎn),設(shè)為橢圓上一點(diǎn),且滿足為坐標(biāo)原點(diǎn)),當(dāng) 時(shí),求實(shí)數(shù)取值范圍.

查看答案和解析>>

同步練習(xí)冊答案