【題目】2019年國際籃聯(lián)籃球世界杯,將于2019年在北京、廣州、南京、上海、武漢、深圳、佛山、東莞八座城市舉行.為了宣傳世界杯,某大學(xué)從全校學(xué)生中隨機抽取了120名學(xué)生,對是否收看籃球世界杯賽事的情況進行了問卷調(diào)查,統(tǒng)計數(shù)據(jù)如下:
(1)根據(jù)上表說明,能否有的把握認為收看籃球世界杯賽事與性別有關(guān)?
(2)現(xiàn)從參與問卷調(diào)查的120名學(xué)生中,采用按性別分層抽樣的方法選取6人參加2019年國際籃聯(lián)籃球世界杯賽志愿者宣傳活動.
(i)求男、女學(xué)生各選取多少人;
(ii)若從這6人中隨機選取3人到校廣播站開展2019年國際籃聯(lián)籃球世界杯賽宣傳介紹,求恰好選到2名男生的概率.
附:,其中.
【答案】(1)有的把握認為收看籃球世界杯賽事與性別有關(guān).(2)(i)男生4人;女生2人. (ii)
【解析】
(1)根據(jù)所給數(shù)據(jù),代入的計算公式,即可求得的觀測值,與臨界值比較即可做出判斷.
(2)由分層抽樣的特點,即可求得男生和女生分別抽取的人數(shù);根據(jù)古典概型概率,求得抽取2個男生的所有情況,再求得所有抽取3人的情況,即可求得抽取2個男生的概率.
(1)由表中數(shù)據(jù),結(jié)合公式,代入可得
所以有的把握認為收看籃球世界杯賽事與性別有關(guān).
(2)(i)120人中,有男生80人,女生40人.
按性別分層抽樣的方法選取6人,則抽取男生人數(shù)為人.
抽取女生人數(shù)為人.
(ii)從6人中,選取3人,總的方法有種
其中恰有2個男生的情況為種
所以從這6人中隨機選取3人恰好選到2名男生的概率為
科目:高中數(shù)學(xué) 來源: 題型:
【題目】通過隨機詢問110名性別不同的大學(xué)生是否愛好某項運動,得到如表的列聯(lián)表:
男 | 女 | 總計 | |
愛好 | 40 | 20 | 60 |
不愛好 | 20 | 30 | 50 |
總計 | 60 | 50 | 110 |
0.050 | 0.010 | 0.001 | |
k | 3.841 | 6.635 | 10.828 |
算得,.見附表:參照附表,得到的正確結(jié)論是( 。
A. 在犯錯誤的概率不超過0.1%的前提下,認為“愛好該項運動與性別有關(guān)”
B. 在犯錯誤的概率不超過0.1%的前提下,認為“愛好該項運動與性別無關(guān)”
C. 有99%以上的把握認為“愛好該項運動與性別有關(guān)”
D. 有99%以上的把握認為“愛好該項運動與性別無關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是定義在上的周期函數(shù),周期,對都有,且當時,,若在區(qū)間內(nèi)關(guān)于的方程恰有3個不同的實根,則的取值范圍是
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某小區(qū)所有263戶家庭人口數(shù)分組表示如下:
家庭人口數(shù) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
家庭數(shù) | 20 | 29 | 48 | 50 | 46 | 36 | 19 | 8 | 4 | 3 |
(1)若將上述家庭人口數(shù)的263個數(shù)據(jù)分布記作,平均值記作,寫出人口數(shù)方差的計算公式(只要計算公式,不必計算結(jié)果);
(2)寫出他們家庭人口數(shù)的中位數(shù)(直接給出結(jié)果即可);
(3)計算家庭人口數(shù)的平均數(shù)與標準差.(寫出公式,再利用計算器計算,精確到0.01)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】科研人員在對人體脂肪含量和年齡之間關(guān)系的研究中,獲得了一些年齡和脂肪含量的簡單隨機樣本數(shù)據(jù),如下表:
(年齡/歲) | 26 | 27 | 39 | 41 | 49 | 53 | 56 | 58 | 60 | 61 |
(脂肪含量/%) | 14.5 | 17.8 | 21.2 | 25.9 | 26.3 | 29.6 | 31.4 | 33.5 | 35.2 | 34.6 |
根據(jù)上表的數(shù)據(jù)得到如下的散點圖.
(1)根據(jù)上表中的樣本數(shù)據(jù)及其散點圖:
(i)求;
(i)計算樣本相關(guān)系數(shù)(精確到0.01),并刻畫它們的相關(guān)程度.
(2)若關(guān)于的線性回歸方程為,求的值(精確到0.01),并根據(jù)回歸方程估計年齡為50歲時人體的脂肪含量.
附:參考數(shù)據(jù):img src="http://thumb.zyjl.cn/Upload/2019/08/18/08/786210e5/SYS201908180802150104289801_ST/SYS201908180802150104289801_ST.007.png" width="51" height="19" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />,,,,,,
參考公式:相關(guān)系數(shù)
回歸方程中斜率和截距的最小二乘估計公式分別為,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,,曲線與在原點處的切線相同.
(1)求,的值;
(2)求的單調(diào)區(qū)間和極值;
(3)若時,,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)購買某種儀器,在儀器使用期間可能出現(xiàn)故障,需要請銷售儀器的企業(yè)派工程師進行維修,因為考慮到人力、成本等多方面的原因,銷售儀器的企業(yè)提供以下購買儀器維修服務(wù)的條件:在購買儀器時,可以直接購買儀器維修服務(wù),維修一次1000元;在儀器使用期間,如果維修服務(wù)次數(shù)不夠再次購買,則需要每次1500元..現(xiàn)需決策在購買儀器的同時購買幾次儀器維修服務(wù),為此搜集并整理了500臺這種機器在使用期內(nèi)需要維修的次數(shù),得到如下表格:
維修次數(shù) | 5 | 6 | 7 | 8 | 9 |
頻數(shù)(臺) | 50 | 100 | 150 | 100 | 100 |
記表示一臺儀器使用期內(nèi)維修的次數(shù),表示一臺儀器使用期內(nèi)維修所需要的費用,表示購買儀器的同時購買的維修服務(wù)的次數(shù).
(1)若,求與的函數(shù)關(guān)系式;
(2)以這500臺儀器使用期內(nèi)維修次數(shù)的頻率代替一臺儀器維修次數(shù)發(fā)生的概率,求的概率.
(3)假設(shè)購買這500臺儀器的同時每臺都購買7次維修服務(wù),或每臺都購買8次維修服務(wù),請分別計算這500臺儀器在購買維修服務(wù)所需要費用的平均數(shù),以此為決策依據(jù),判斷購買7次還是8次維修服務(wù)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)高中畢業(yè)班的三名同學(xué)甲、乙、丙參加某大學(xué)的自主招生考核,在本次考核中只有合格和優(yōu)秀兩個等次.若考核為合格,則給予分的降分資格;若考核為優(yōu)秀,則給予分的降分資格.假設(shè)甲、乙、丙考核為優(yōu)秀的概率分別為、、,他們考核所得的等次相互獨立.
(1)求在這次考核中,甲、乙、丙三名同學(xué)中至少有一名考核為優(yōu)秀的概率;
(2)記在這次考核中,甲、乙、丙三名同學(xué)所得降分之和為隨機變量,請寫出所有可能的取值,并求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示在四棱錐中,下底面為正方形,平面平面,為以為斜邊的等腰直角三角形,,若點是線段上的中點.
(1)證明平面.
(2)求二面角的平面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com