【題目】已知,曲線在原點(diǎn)處的切線相同.

1)求,的值;

2)求的單調(diào)區(qū)間和極值;

3)若時(shí),,求的取值范圍.

【答案】1, 2的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;,無極大值;3

【解析】

1)先求得.根據(jù)導(dǎo)數(shù)的幾何意義,將切點(diǎn)坐標(biāo)代入求得切線斜率.再根據(jù)兩個(gè)函數(shù)在原點(diǎn)的切線相同,即可求得的值;將切點(diǎn)代入即可求得的值.

2)將的值代入,求得極值點(diǎn).討論極值點(diǎn)左右兩側(cè)導(dǎo)數(shù)的符號(hào),即可確定的單調(diào)區(qū)間和極值;3)由(1)可知當(dāng)時(shí).所以當(dāng)時(shí),對(duì)于任意都成立;當(dāng)時(shí),構(gòu)造函數(shù),代入、后求得,再根據(jù)所求的構(gòu)造,并求得.分析可知,當(dāng)時(shí),所以令,進(jìn)而討論的取值情況. 當(dāng)時(shí),可知單調(diào)遞增,因而,.從而可得;當(dāng)時(shí),可得單調(diào)遞增,由零點(diǎn)存在定理可知存在,使得.通過的單調(diào)性可知,所以,內(nèi)有單調(diào)遞減區(qū)間,因而不成立.即可得的取值范圍.

1,定義域?yàn)?/span>.

,

在原點(diǎn)處的切線斜率為,

而曲線在原點(diǎn)處的切線相同.

所以

解得

由題意可知

代入可得

綜上可得,

2)由(1)可知,

,解得

當(dāng)時(shí),

當(dāng)時(shí),

所以的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為

處取得極小值,無極大值

3)由(1)可知當(dāng)時(shí)

此時(shí)無論取何值,均滿足

當(dāng)時(shí),

可知

所以令,解得

i:當(dāng)時(shí),,

所以單調(diào)遞增,所以.

,所以內(nèi)單調(diào)遞增,

,此時(shí)滿足題意.

ii:當(dāng)時(shí),,所以單調(diào)遞增

,當(dāng)時(shí),

由零點(diǎn)存在定理可知存在,使得

因而內(nèi)單調(diào)遞減,內(nèi)單調(diào)遞增

而由于,

因而,內(nèi)有單調(diào)遞減區(qū)間,

因而,不符合題意

綜上可知,當(dāng)時(shí),,的取值范圍為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知:.

(1)討論的單調(diào)性;

(2)當(dāng)時(shí),證明:

(i)在點(diǎn)處的切線與的圖像至少有兩個(gè)不同的公共點(diǎn);

(ii)若另有公共點(diǎn)為,其中,則.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的左焦點(diǎn)為,右頂點(diǎn)為,離心率為.已知是拋物線的焦點(diǎn), 到拋物線的準(zhǔn)線的距離為.

(I)求橢圓的方程和拋物線的方程;

(II)設(shè)上兩點(diǎn) 關(guān)于軸對(duì)稱,直線與橢圓相交于點(diǎn)異于點(diǎn)),直線軸相交于點(diǎn).若的面積為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面四邊形中,、所成的比為,即,則有:.

1)拓展到空間,寫出空間四邊形類似的命題,并加以證明;

2)在長(zhǎng)方體中,,,、分別為、的中點(diǎn),利用上述(1)的結(jié)論求線段的長(zhǎng)度;

3)在所有棱長(zhǎng)均為平行六面體中,為銳角定值),、所成的比為,求的長(zhǎng)度.(用,表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年國(guó)際籃聯(lián)籃球世界杯,將于2019年在北京、廣州、南京、上海、武漢、深圳、佛山、東莞八座城市舉行.為了宣傳世界杯,某大學(xué)從全校學(xué)生中隨機(jī)抽取了120名學(xué)生,對(duì)是否收看籃球世界杯賽事的情況進(jìn)行了問卷調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如下:

1)根據(jù)上表說明,能否有的把握認(rèn)為收看籃球世界杯賽事與性別有關(guān)?

2)現(xiàn)從參與問卷調(diào)查的120名學(xué)生中,采用按性別分層抽樣的方法選取6人參加2019年國(guó)際籃聯(lián)籃球世界杯賽志愿者宣傳活動(dòng).

i)求男、女學(xué)生各選取多少人;

ii)若從這6人中隨機(jī)選取3人到校廣播站開展2019年國(guó)際籃聯(lián)籃球世界杯賽宣傳介紹,求恰好選到2名男生的概率.

附:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在下列向量組中,可以把向量=(3,2)表示出來的是(   )

A. =(0,0),=(1,2)B. =(-1,2),=(5,-2)

C. =(3,5),=(6,10)D. =(2,-3),=(-2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

在極坐標(biāo)系中,為極點(diǎn),點(diǎn),點(diǎn).

(1)以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,求經(jīng)過,,三點(diǎn)的圓的直角坐標(biāo)方程;

(2)在(1)的條件下,圓的極坐標(biāo)方程為,若圓與圓相切,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】高二某班名同學(xué)期末考完試后,商量購買一些學(xué)習(xí)參考書準(zhǔn)備在高三時(shí)使用,大家約定:每個(gè)人通過擲一枚質(zhì)地均勻的骰子決定自己去哪購買,擲出點(diǎn)數(shù)大于或等于的人去圖書批發(fā)市場(chǎng)購買,擲出點(diǎn)數(shù)小于的人去網(wǎng)上購買,且參加者必須從圖書批發(fā)市場(chǎng)和網(wǎng)上選擇一家購買.

1)求這人中至多有人去圖書批發(fā)市場(chǎng)購買的概率;

2)用、分別表示這人中去圖書批發(fā)市場(chǎng)和網(wǎng)上購買的人數(shù),記,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋中裝有除顏色外形狀大小完全相同的6個(gè)小球,其中有4個(gè)編號(hào)為1,2, 3, 4的紅球,2個(gè)編號(hào)為A、B的黑球,現(xiàn)從中任取2個(gè)小球.;

(1)求所取2個(gè)小球都是紅球的概率;

(2)求所取的2個(gè)小球顏色不相同的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案