已知函數(shù)y=f(x)是奇函數(shù),當(dāng)x≥0,f(x)=3x-1,設(shè)f(x)的反函數(shù)是y=g(x),則g(-8)=(  )
A、-2B、2C、-3D、3
考點(diǎn):反函數(shù)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由原函數(shù)的自變量是其反函數(shù)的函數(shù)值,解f(x)=-8可得.
解答: 解:∵原函數(shù)的自變量是其反函數(shù)的函數(shù)值,
∴令f(x)=-8,可先求f(x)=8時(shí)x的值,
∵當(dāng)x≥0,f(x)=3x-1=8,∴x=2,
由奇函數(shù)可得f(-2)=-8,
故選:A
點(diǎn)評(píng):本題考查反函數(shù),解得f(x)=8時(shí)的x值是解決問題的關(guān)鍵,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若從區(qū)間(0,2)內(nèi)隨機(jī)取兩個(gè)數(shù),則這兩個(gè)數(shù)的和不小于3的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)=x2+(4cosθ)x-1在[1,
3
]上為增函數(shù),則θ的取值范圍是(  )
A、[2kπ-
3
,2kπ+
3
](k∈Z)
B、[2kπ-
π
6
,2kπ+
π
6
](k∈Z)
C、[2kπ+
π
3
,2kπ+
3
](k∈Z)
D、[2kπ-
π
3
,2kπ+
π
3
](k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x-2a|-alnx,常數(shù)a∈R.
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)有兩個(gè)零點(diǎn)x1、x2,且x1<x2
(1)指出a的取值范圍,并說明理由;
(2)求證:x1•x2<8a3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙、丙、丁四個(gè)人排成一行,則乙、丙相鄰的排法種數(shù)是( 。
A、6B、8C、12D、24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果執(zhí)行如圖的程序框圖,輸入正整數(shù)n=5,m=4,那么輸出的p等于(  )
A、5B、10C、20D、120

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sin(α+
π
6
)=-
4
5
,α∈(-
π
2
,
π
2
),求sinα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的奇函數(shù)f(x),當(dāng)x∈(0,+∞)時(shí),f(x)為減函數(shù),且f(2)=0,則不等式(x-1)f(x)>0的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
x2
-alnx(a∈R)
(1)求f(x)的單調(diào)區(qū)間和極值;
(2)設(shè)g(x)=f(x)+2x,若g(x)在[1,e]上不單調(diào)且僅在x=e處取得最大值,求a的取值范圍;
(3)當(dāng)a=1時(shí),探究當(dāng)x∈(1,+∞)時(shí),函數(shù)y=f(x)的圖象與函數(shù)h(x)=
1
2
x2
-x+1圖象之間的關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案