分析 分別在三角形ABC和三角形BCD中求出AD,BD,再在三角形ABD中使用余弦定理求出AB.
解答 解:∵∠CAB=180°-∠ADC-∠ACB=45°,∴△ABC是等腰直角三角形,∴AC=CD=40,AD=40$\sqrt{2}$.
在△BCD中,∠CBD=180°-∠BCD-∠BDC=45°,∵$\frac{BD}{sin30°}=\frac{CD}{sin45°}$,∴BD=20$\sqrt{2}$.
在△ABD中,由余弦定理得AB2=AD2+BD2-2AD•BD•cos60°=2400,
∴AB=20$\sqrt{6}$.
點評 本題考查了正余弦定理在解三角形中的應用,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com