【題目】如圖,定義在[﹣1,2]上的函數(shù)f(x)的圖象為折線段ACB,
(1)求函數(shù)f(x)的解析式;
(2)請用數(shù)形結(jié)合的方法求不等式f(x)≥log2(x+1)的解集,不需要證明.
【答案】
(1)解:根據(jù)圖象可知點A(﹣1,0),B(0,2),C(2,0),所以
(2)解:根據(jù)(1)可得函數(shù)f(x)的圖象經(jīng)過點(1,1),而函數(shù)log2(x+1)也過點(1,1),
函數(shù)log2(x+1)的圖象可以由log2x左移1個單位而來,
如圖所示,所以根據(jù)圖象可得不等式f(x)≥log2(x+1)的解集是(﹣1,1]
【解析】(1)利用待定系數(shù)法求函數(shù)f(x)的解析式;(2根據(jù)函數(shù)的圖象確定函數(shù)值對應(yīng)的取值范圍.
【考點精析】解答此題的關(guān)鍵在于理解函數(shù)單調(diào)性的性質(zhì)的相關(guān)知識,掌握函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間 ,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=sinx+ cosx.求:
(1)f(x)圖象的對稱中心的坐標;
(2)f(x)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某大學生在開學季準備銷售一種文具套盒進行試創(chuàng)業(yè),在一個開學季內(nèi),每售出盒該產(chǎn)品獲利潤元;未售出的產(chǎn)品,每盒虧損元.根據(jù)歷史資料,得到開學季市場需求量的頻率分布直方圖,如圖所示,該同學為這個開學季購進了盒該產(chǎn)品,以(單位:盒, )表示這個開學季內(nèi)的市場需求量,(單位:元)表示這個開學季內(nèi)經(jīng)銷該產(chǎn)品的利潤.
(1)根據(jù)直方圖估計這個開學季內(nèi)市場需求量的中位數(shù);
(2)將表示為的函數(shù);
(3)根據(jù)直方圖估計利潤不少于元的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知一個分段函數(shù)可利用函數(shù) 來表示,例如要表示一個分段函數(shù) ,可將函數(shù)g(x)表示為g(x)=xS(x﹣2)+(﹣x)S(2﹣x).現(xiàn)有一個函數(shù)f(x)=(﹣x2+4x﹣3)S(x﹣1)+(x2﹣1)S(1﹣x).
(1)求函數(shù)f(x)在區(qū)間[0,4]上的最大值與最小值;
(2)若關(guān)于x的不等式f(x)≤kx對任意x∈[0,+∞)都成立,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)=ax3+bx2+cx+d是實數(shù)集R上的偶函數(shù),并且f(x)<0的解為(﹣2,2),則 的值為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于函數(shù)f(x),若存在x∈R,使f(x0)=x0成立,則稱x0為f(x)的不動點.已知函數(shù)f(x)=ax2+(b+1)x+(b﹣1)(a≠0).
(1)當a=1,b=2時,求函數(shù)f(x)的不動點;
(2)若對任意實數(shù)b,函數(shù)f(x)恒有兩個相異的不動點,求a的取值范圍;
(3)在(2)的條件下,若f(x)的兩個不動點為x1 , x2 , 且f(x1)+x2= ,求實數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)y=f(x)在定義域(﹣ ,3)內(nèi)可導(dǎo),其圖像如圖所示.記y=f(x)的導(dǎo)函數(shù)為y=f′(x),則不等式 ≤0的解集為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某產(chǎn)品的廣告費用x與銷售額y的統(tǒng)計數(shù)據(jù)如下表
廣告費用x(萬元) | 4 | 2 | 3 | 5 |
銷售額y(萬元) | 49 | 26 | 39 | 54 |
根據(jù)上表可得回歸方程 = x+ 的 為9.4,據(jù)此模型預(yù)報廣告費用為6萬元時銷售額為( )
A.63.6萬元
B.65.5萬元
C.67.7萬元
D.72.0萬元
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出定義:若 m﹣ <x≤m+ (其中m為整數(shù)),則m叫做離實數(shù)x最近的整數(shù),記作{x},即{x}=m.在此基礎(chǔ)上給出下列關(guān)于函數(shù)f(x)=x﹣{x}的四個命題:
①函數(shù)y=f(x)的定義域是R,值域是(﹣ , ]
②函數(shù)y=f(x)的圖象關(guān)于y軸對稱;
③數(shù)y=f(x)的圖象關(guān)于坐標原點對稱;
④函數(shù)y=f(x)在(﹣ , ]上是增函數(shù);
則其中正確命題是(填序號).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com