11.設(shè)a,b∈R,若a>b,則( 。
A.$\frac{1}{a}$<$\frac{1}$B.2a>2bC.lga>lgbD.sina>sinb

分析 根據(jù)不等式的性質(zhì)判斷A,根據(jù)指數(shù)函數(shù),對(duì)數(shù)函數(shù)和三角函數(shù)判斷B,C,D

解答 解:a,b∈R,a>b,
當(dāng)a>0,b<0時(shí),A不成立,
根據(jù)指數(shù)函數(shù)的單調(diào)性可知,B正確,
根據(jù)對(duì)數(shù)函數(shù)的定義,可知真數(shù)必需大于零,故C不成立,
由于正弦函數(shù)具有周期性和再某個(gè)區(qū)間上為單調(diào)函數(shù),故不能比較,故D不成立,
故選:B.

點(diǎn)評(píng) 本題考查了不等式的性質(zhì),以及指數(shù)函數(shù),對(duì)數(shù)函數(shù)和三角函數(shù)的單調(diào)性,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.若數(shù)列{An}:a1,a2,…,an(n≥2)滿足|ak+1-ak|=1(k=1,2,3,…,n-1),數(shù)列An為G數(shù)列,記S(An)=a1+a2+…+an
(1)寫(xiě)出一個(gè)滿足a1=a7=0,且S(A7)>0的G數(shù)列An
(2)若a1=2,n=2016,證明:G數(shù)列An是遞增數(shù)列的充要條件是an=2017;
(3)對(duì)任意給定的整數(shù)n(n≥2),是否存在首項(xiàng)為0的G數(shù)列An,使得S(An)=0?如果存在,寫(xiě)出一個(gè)滿足條件的G數(shù)列An;如果不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.將一枚質(zhì)地均勻的硬幣連續(xù)拋擲n次,若使得至少有一次正面向上的概率大于或等于$\frac{15}{16}$,則n的最小值為( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.執(zhí)行如圖所示的程序框圖,輸出的x的值為( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知x的取值范圍是[0,8],執(zhí)行如圖的程序框圖,則輸出的y≥3的概率為( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.設(shè)F1,F(xiàn)2分別是橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左,右焦點(diǎn),E的離心率為$\frac{\sqrt{2}}{2}$,點(diǎn)(0,1)是E上一點(diǎn).
(1)求橢圓E的方程;
(2)過(guò)點(diǎn)F1的直線交橢圓E于A,B兩點(diǎn),且$\overrightarrow{B{F}_{1}}$=2$\overrightarrow{{F}_{1}A}$,求直線BF2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.下列說(shuō)法錯(cuò)誤的是( 。
A.回歸直線過(guò)樣本點(diǎn)的中心($\overline{x}$,$\overline{y}$)
B.兩個(gè)隨機(jī)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值就越接近于1
C.對(duì)分類變量X與Y,隨機(jī)變量K2的觀測(cè)值越大,則判斷“X與Y有關(guān)系”的把握程度越小
D.在回歸直線方程$\stackrel{∧}{y}$=0.2x+0.8中,當(dāng)解釋變量x每增加1個(gè)單位時(shí)預(yù)報(bào)變量$\stackrel{∧}{y}$平均增加0.2個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知F1、F2分別為雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn),點(diǎn)P為雙曲線右支上一點(diǎn),M為△PF1F2的內(nèi)心,滿足S${\;}_{△MP{F}_{1}}$=S${\;}_{MP{F}_{2}}$+λS${\;}_{△M{F}_{1}{F}_{2}}$若該雙曲線的離心率為3,則λ=$\frac{1}{3}$
(注:S${\;}_{△MP{F}_{1}}$、S${\;}_{MP{F}_{2}}$、S${\;}_{△M{F}_{1}{F}_{2}}$分別為△MPF1、△MPF2、△MF1F2的面積)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知函數(shù)f(x)在R上滿足f(x)=2f(2-x)-x2+8x-8,則曲線y=f(x)在x=1處的切線方程是y=2x-1.

查看答案和解析>>

同步練習(xí)冊(cè)答案