若直線與圓交于、兩點,且、兩點關于直線對稱,則實數(shù)的取值范圍為_______.

 

【答案】

【解析】

試題分析:由兩交點關于直線對稱可知直線與直線相互垂直,且直線過圓心,所以.圓的標準方程為:.所以圓心為,故.由直線與圓有兩交點,將代入,聯(lián)立方程

.所以,另,所以解得.

考點:直線與圓的方程、直線與圓的位置關系

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知圓C:x2+(y-1)2=5,直線l:mx-y+1-m=0.
(1)求證:對m∈R,直線l與圓C總有兩個不同的交點;
(2)設直線l與圓C交于A、B兩點,若|AB|=
17
,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C:x2+(y-1)2=5,直線l:mx-y+1-m=0
(1)求證:對m∈R,直線l與C總有兩個不同的交點;
(2)設l與C交于A、B兩點,若|AB|=
17
,求l的方程;
(3)若l與圓C交于A、B兩點且以AB為直徑的圓過坐標原點,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•許昌二模)已知極坐標系的極點與直角坐標系的原點重合,極軸與直角坐標系中x軸的正半軸重合,且兩坐標系有相同的長度單位,圓C的參數(shù)方程為
x=1+2cosα
y=-1+2sinα
(α為參數(shù)),點Q的極坐標為(2
2
7
4
π).
(Ⅰ)化圓C的參數(shù)方程為極坐標方程;
(Ⅱ)若直線l過點Q且與圓C交于M,N兩點,求當|MN|最小時,直線l的直角坐標方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2012屆遼寧省撫順市六校聯(lián)合體高二下學期期末考試數(shù)學 題型:解答題

(本題12分)已知圓C經(jīng)過點A(1,—1),B(—2,0),C(,1)直線:

(1)求圓C的方程;   

(2)求證:,直線與圓C總有兩個不同的交點;

(3)若直線與圓C交于M、N兩點,當時,求m的值。

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本題12分)已知圓C經(jīng)過點A(1,—1),B(—2,0),C(,1)直線:

   (1)求圓C的方程;   

(2)求證:,直線與圓C總有兩個不同的交點;

(3)若直線與圓C交于M、N兩點,當時,求m的值。

查看答案和解析>>

同步練習冊答案