【題目】已知a>0,設(shè)命題p:函數(shù)f(x)=x2﹣2ax+1﹣2a在區(qū)間[0,1]上與x軸有兩個不同的交點(diǎn);命題q:g(x)=|x﹣a|﹣ax有最小值.若(¬p)∧q是真命題,求實(shí)數(shù)a的取值范圍.

【答案】解:若p真,則 ,即
<a≤
若q真,g(x)=|x﹣a|﹣ax= ,
∵a>0,
∴﹣(1+a)<0,
即g(x)在(﹣∞,a)單調(diào)遞減的,要使g(x)有最小值,則g(x)在[a,+∞)增或?yàn)槌?shù),
即1﹣a≥0,
∴0<a≤1,
若(¬p)∧q是真命題,則p為假命題且q為真命題,

解得:a∈(0, ]∪( ,1]
【解析】由(¬p)∧q是真命題,得:p假且q真;分別求出命題p,q為真假是參數(shù)a的范圍,可得答案.
【考點(diǎn)精析】本題主要考查了命題的真假判斷與應(yīng)用的相關(guān)知識點(diǎn),需要掌握兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關(guān)系才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知⊙O是△ABC的外接圓,AB=BC,AD是BC邊上的高,AE是⊙O的直徑.

(1)求證:ACBC=ADAE;
(2)過點(diǎn)C作⊙O的切線交BA的延長線于點(diǎn)F,若AF=4,CF=6,求AC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合A={(x,y)|(x﹣4)2+y2=1},B={(x,y)|(x﹣t)2+(y﹣at+2)2=1},如果命題“t∈R,A∩B≠”是真命題,則實(shí)數(shù)a的取值范圍是(
A.[1,4]
B.[0, ]
C.[0, ]
D.(﹣∞,0]∪( ,+∞]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)關(guān)于x的一元二次方程x2+2ax+b2=0.
(1)若a是從0,1,2,3四個數(shù)中任取的一個數(shù),b是從0,1,2三個數(shù)中任取的一個數(shù),求上述方程有實(shí)根的概率.
(2)若a是從區(qū)間[0,3]任取的一個數(shù),b是從區(qū)間[0,2]任取的一個數(shù),求上述方程有實(shí)根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分14分)

在正三棱柱中,點(diǎn)的中點(diǎn),

(1)求證:平面;

(2)試在棱上找一點(diǎn),使

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】本小題滿分為16為了保護(hù)環(huán)境,發(fā)展低碳經(jīng)濟(jì),某單位在國家科研部門的支持下,進(jìn)行技術(shù)攻關(guān),新上了把二氧化碳處理轉(zhuǎn)化為一種可利用的化工產(chǎn)品的項(xiàng)目,經(jīng)測算,該項(xiàng)目月處理成本y與月處理量x之間的函數(shù)關(guān)系可近似地表示為

,且每處理一噸二氧化碳得到可利用的化工產(chǎn)品價值為200元,若該項(xiàng)目不獲利,國家將給予補(bǔ)償

1當(dāng)x[200,300]時,判斷該項(xiàng)目能否獲利?如果獲利,求出最大利潤;如果不獲利,則國家每月至少需要補(bǔ)貼多少元才能使該項(xiàng)目不虧損?

2該項(xiàng)目每月處理量為多少噸時,才能使每噸的平均處理成本最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為了解一個英語教改實(shí)驗(yàn)班的情況,舉行了一次測試,將該班30位學(xué)生的英語成績進(jìn)行統(tǒng)計(jì),得圖示頻率分布直方圖,其中成績分組區(qū)間是:[50,60),[60,70),[70,80),[80,90),[90,100].

(1)求出該班學(xué)生英語成績的眾數(shù),平均數(shù)及中位數(shù);
(2)從成績低于80分的學(xué)生中隨機(jī)抽取2人,規(guī)定抽到的學(xué)生成績在[50,60)的記1績點(diǎn)分,在[60,80)的記2績點(diǎn)分,設(shè)抽取2人的總績點(diǎn)分為ξ,求ξ的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x﹣a|.
(1)若f(x)≤m的解集為{x|﹣1≤x≤5},求實(shí)數(shù)a,m的值.
(2)當(dāng)a=2且0≤t<2時,解關(guān)于x的不等式f(x)+t≥f(x+2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 =(cos2x, sinx), =(1,cosx),函數(shù)f(x)=2 +m,且當(dāng)x∈[0, ]時,f(x)的最小值為2.
(1)求m的值,并求f(x)圖象的對稱軸方程;
(2)設(shè)函數(shù)g(x)=[f(x)2]﹣f(x),x∈[0, ],求g(x)的最大值.

查看答案和解析>>

同步練習(xí)冊答案