已知a=(cosx,sinx),b=(sinx,cosx),記f(x)=a•b,要得到函數(shù)y=sin4x-cos4x的圖象,只需將函數(shù)y=f(x)的圖象


  1. A.
    向左平移數(shù)學(xué)公式個單位長度
  2. B.
    向右平移數(shù)學(xué)公式個單位長度
  3. C.
    向左平移數(shù)學(xué)公式個單位長度
  4. D.
    向右平移數(shù)學(xué)公式個單位長度
D
分析:先對函數(shù)化簡可得,f(x)=sin2x.,y=sin4x-cos4x=(sin2x-cos2x)=-cos2x且sin(2x-=-cos2x,根據(jù)函數(shù)的左加右減的平移法則可求.
解答:∵
又∵y=sin4x-cos4x=(sin2x-cos2x)=-cos2x
而sin(2x-=-cos2x
可得
故選D.
點評:本題主要考查三角函數(shù)的平移.誘導(dǎo)公式的應(yīng)用,三角函數(shù)的平移原則為左加右減上加下減.屬于基礎(chǔ)試題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(cosx+sinx,sinx),
b
=(cosx-sinx,2cosx).
(1)求證:向量
a
與向量
b
不可能平行;
(2)若f(x)=
a
b
,且x∈[-
π
4
,
π
4
]時,求函數(shù)f(x)的最大值及最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(cosx+sinx,sinx),
b
=(cosx+sinx,-2sinx),且f(x)=
a
.
b

(1)求f(x)的解析式,并用f(x)=Asin(wx+φ)的形式表示;
(2)求方程f(x)=1的解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(cosx,sinx),
b
=(sinx,cosx),與f(x)=
a
b
要得到函數(shù)y=cos2x-sin2x的圖象,只需將函數(shù)y=f(x)的圖象( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(1-cosx,2sin
x
2
),
b
=(1+cosx,2cos
x
2
)
,設(shè)f(x)=2+sinx-
1
4
|
a
-
b
|2

(Ⅰ)求f(x)的表達式;
(Ⅱ)若函數(shù)g(x)和函數(shù)f(x)的圖象關(guān)于原點對稱,
(。┣蠛瘮(shù)g(x)的解析式;
(ⅱ)若函數(shù)h(x)=g(x)-λf(x)+1在區(qū)間[-
π
2
,
π
2
]
上是增函數(shù),求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(cosx+sinx,sinx),
b
=(cosx-sinx,2cosx),設(shè)f(x)=
a
b

(1)求函數(shù)f(x)的最小正周期;
(2)由y=sinx的圖象經(jīng)過怎樣變換得到y(tǒng)=f(x)的圖象,試寫出變換過程;
(3)當x∈[0,
π
2
]時,求函數(shù)f(x)的最大值及最小值.

查看答案和解析>>

同步練習冊答案