【題目】在城市生活節(jié)奏超快的時(shí)代,自駕游出行已經(jīng)成了當(dāng)今許多家庭緩解壓力的一種方式,某地區(qū)8戶愛(ài)好自駕游家庭的年收入與年旅游支出的統(tǒng)計(jì)資料如下表所示:

年收入萬(wàn)元

14

13

年旅游支出萬(wàn)元

1)若對(duì)呈線性相關(guān)關(guān)系,根據(jù)表中的數(shù)據(jù)求年旅游支出y關(guān)于年收入x的線性回歸方程;注:計(jì)算結(jié)果保留兩位小數(shù)

2)據(jù)行內(nèi)統(tǒng)計(jì)數(shù)據(jù)顯示,若家庭年旅游投入達(dá)到4萬(wàn)元,則在圈內(nèi)被譽(yù)為狂游家庭,若該地區(qū)某戶家庭的年收入為16萬(wàn)元,預(yù)測(cè)其是否能夠步入狂游家庭行列.

參考公式及數(shù)據(jù):

;

【答案】1;(2)不能

【解析】

1)先求得,利用所給公式求得,代入回歸方程即可確定,進(jìn)而得回歸直線方程.

2)根據(jù)(1)中所得回歸直線方程,代入求得預(yù)測(cè)值,進(jìn)而可作出判斷.

1)設(shè)關(guān)于的回歸直線方程為

因?yàn)?/span>在回歸方程

;

2)當(dāng)時(shí),,

不能夠跨入狂游家庭的行列.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】建設(shè)生態(tài)文明,是關(guān)系人民福祉,關(guān)乎民族未來(lái)的長(zhǎng)遠(yuǎn)大計(jì).某市通宵營(yíng)業(yè)的大型商場(chǎng),為響應(yīng)節(jié)能減排的號(hào)召,在氣溫超過(guò)時(shí),才開(kāi)放中央空調(diào)降溫,否則關(guān)閉中央空調(diào).如圖是該市夏季一天的氣溫(單位:)隨時(shí)間(,單位:小時(shí))的大致變化曲線,若該曲線近似的滿足函數(shù)關(guān)系.

(1)求函數(shù)的表達(dá)式;

(2)請(qǐng)根據(jù)(1)的結(jié)論,判斷該商場(chǎng)的中央空調(diào)應(yīng)在本天內(nèi)何時(shí)開(kāi)啟?何時(shí)關(guān)閉?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程。

已知曲線Ct為參數(shù)), C為參數(shù))。

1)化C,C的方程為普通方程,并說(shuō)明它們分別表示什么曲線;

2)若C上的點(diǎn)P對(duì)應(yīng)的參數(shù)為,QC上的動(dòng)點(diǎn),求中點(diǎn)到直線

t為參數(shù))距離的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】瑞士著名數(shù)學(xué)家歐拉在1765年提出定理:三角形的外心、重心、垂心位于同一直線上.這條直線被后人稱為三角形的歐拉線”.在平面直角坐標(biāo)系中作△ABC,ABAC4,點(diǎn)B(1,3),點(diǎn)C(4,-2),且其歐拉線與圓M相切,則下列結(jié)論正確的是(

A.M上點(diǎn)到直線的最小距離為2

B.M上點(diǎn)到直線的最大距離為3

C.若點(diǎn)(x,y)在圓M上,則的最小值是

D.與圓M有公共點(diǎn),則a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有4名學(xué)生參加演講比賽,有兩個(gè)題目可供選擇,組委會(huì)決定讓選手通過(guò)擲一枚質(zhì)地均勻的骰子選擇演講的題目,規(guī)則如下:選手?jǐn)S出能被3整除的數(shù)則選擇題目,擲出其他的數(shù)則選擇題目.

(1)求這4個(gè)人中恰好有1個(gè)人選擇題目的概率;

(2)用分別表示這4個(gè)人中選擇題目的人數(shù),記,求隨機(jī)變量的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方體中,,分別為棱的中點(diǎn),則下列說(shuō)正確的是(

A.平面B.平面

C.異面直線所成角為90°D.平面截正方體所得截面為等腰梯形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)國(guó)際海洋安全規(guī)定:兩國(guó)軍艦正常狀況下(聯(lián)合軍演除外),在公海上的安全距離為20(即距離不得小于20),否則違反了國(guó)際海洋安全規(guī)定.如圖,在某公海區(qū)域有兩條相交成60°的直航線,交點(diǎn)是,現(xiàn)有兩國(guó)的軍艦甲,乙分別在,上的,處,起初,,后來(lái)軍艦甲沿的方向,乙軍艦沿的方向,同時(shí)以40的速度航行.

1)起初兩軍艦的距離為多少?

2)試判斷這兩艘軍艦是否會(huì)違反國(guó)際海洋安全規(guī)定?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為響應(yīng)德智體美勞的教育方針,唐徠回中高一年級(jí)舉行了由全體學(xué)生參加的一分鐘跳繩比賽,計(jì)分規(guī)則如下:

每分鐘跳繩個(gè)數(shù)

185以上

得分

16

17

18

19

20

年級(jí)組為了了解學(xué)生的體質(zhì),隨機(jī)抽取了100名學(xué)生,統(tǒng)計(jì)了他的跳繩個(gè)數(shù),并繪制了如下樣本頻率直方圖:

1)現(xiàn)從這100名學(xué)生中,任意抽取2人,求兩人得分之和小于35分的概率(結(jié)果用最簡(jiǎn)分?jǐn)?shù)表示);

2)若該校高二年級(jí)2000名學(xué)生,所有學(xué)生的一分鐘跳繩個(gè)數(shù)近似服從正態(tài)分布,其中為樣本平均數(shù)的估計(jì)值(同一組中數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間的中點(diǎn)值為代表).利用所得到的正態(tài)分布模型解決以下問(wèn)題:

①估計(jì)每分鐘跳繩164個(gè)以上的人數(shù)(四舍五入到整數(shù))

②若在全年級(jí)所有學(xué)生中隨機(jī)抽取3人,記每分鐘跳繩在179個(gè)以上的人數(shù)為,求的分布列和數(shù)學(xué)期望與方差.

(若隨機(jī)變量服從正態(tài)分布,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某媒體為調(diào)查喜愛(ài)娛樂(lè)節(jié)目A是否與觀眾性別有關(guān),隨機(jī)抽取了30名男性和30名女性觀眾,抽查結(jié)果用等高條形圖表示如圖:

根據(jù)該等高條形圖,完成下列2×2列聯(lián)表,并用獨(dú)立性檢驗(yàn)的方法分析,能否在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為喜歡娛樂(lè)節(jié)目A與觀眾性別有關(guān)?

喜歡節(jié)目A

不喜歡節(jié)目A

總計(jì)

男性觀眾

女性觀眾

總計(jì)

60

附:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

同步練習(xí)冊(cè)答案