【題目】如圖,在平面直角坐標(biāo)系中,已知橢圓C:(a>b>0)的短軸長為2,F1,F2分別是橢圓C的左、右焦點,過點F2的動直線與橢圓交于點P,Q,過點F2與PQ垂直的直線與橢圓C交于A、B兩點.當(dāng)直線AB過原點時,PF1=3PF2.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若點H(3,0),記直線PH,QH,AH,BH的斜率依次為,,,.
①若,求直線PQ的斜率;
②求的最小值.
【答案】(1)(2)①或②
【解析】
(1)已知條件有,直線AB過原點時,PQx軸,所以△PF1F2為直角三角形,利用橢圓定義和勾股定理可求得,得橢圓方程;
(2)①設(shè)直線PQ:,代入到橢圓方程得后化簡,設(shè)P(,),Q(,),應(yīng)用韋達(dá)定理得,,計算并代入可得;
②分類討論,當(dāng)這兩條直線中有一條與坐標(biāo)軸垂直時,,
當(dāng)兩條直線與坐標(biāo)軸都不垂直時,由①知,同理可得,計算后應(yīng)用基本不等式可得最小值.
解:(1)因為橢圓C:(a>b>0)的短軸長為2,所以b=1,
當(dāng)直線AB過原點時,PQx軸,所以△PF1F2為直角三角形,
由定義知PF1+PF2=2a,而PF1=3PF2,故,,
由得,化簡得a2=2,
故橢圓的方程為.
(2)①設(shè)直線PQ:,代入到橢圓方程得:,設(shè)P(,),Q(,),則,,
所以
所以,
解得:或,即為直線PQ的斜率.
②當(dāng)這兩條直線中有一條與坐標(biāo)軸垂直時,,
當(dāng)兩條直線與坐標(biāo)軸都不垂直時,
由①知,同理可得
故
,
當(dāng)且僅當(dāng)即k=1時取等號.
綜上,的最小值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:()的左、右焦點分別為、,離心率為,點P是橢圓C上的一個動點,且面積的最大值為.
(1)求橢圓C的方程;
(2)橢圓C與x軸交于A、B兩點,直線和與直線l:分別交于點M,N,試探究以為直徑的圓是否恒過定點,若是,求出所有定點的坐標(biāo):若否,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左頂點為,左、右焦點分別為,離心率為,是橢圓上的一個動點(不與左、右頂點重合),且的周長為6,點關(guān)于原點的對稱點為,直線交于點.
(1)求橢圓方程;
(2)若直線與橢圓交于另一點,且,求點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(Ⅰ)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若曲線在點處的切線與曲線切于點,求的值;
(Ⅲ)若恒成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱錐中,與均為等腰直角三角形,且,,為上一點,且平面.
(1)求證:;
(2)過作一平面分別交, , 于,,,若四邊形為平行四邊形,求多面體的表面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國在歐洲的某孔子學(xué)院為了讓更多的人了解中國傳統(tǒng)文化,在當(dāng)?shù)嘏e辦了一場由當(dāng)?shù)厝藚⒓拥闹袊鴤鹘y(tǒng)文化知識大賽,為了了解參加本次大賽參賽人員的成績情況,從參賽的人員中隨機抽取名人員的成績(滿分100分)作為樣本,將所得數(shù)據(jù)進行分析整理后畫出頻率分布直方圖如圖所示,已知抽取的人員中成績在[50,60)內(nèi)的頻數(shù)為3.
(1)求的值和估計參賽人員的平均成績(保留小數(shù)點后兩位有效數(shù)字);
(2)已知抽取的名參賽人員中,成績在[80,90)和[90,100]女士人數(shù)都為2人,現(xiàn)從成績在[80,90)和[90,100]的抽取的人員中各隨機抽取2人,記這4人中女士的人數(shù)為,求的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線:的離心率,其左焦點到此雙曲線漸近線的距離為.
(1)求雙曲線的方程;
(2)若過點的直線交雙曲線于兩點,且以為直徑的圓過原點,求圓的圓心到拋物線的準(zhǔn)線的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣a|﹣|x﹣5|.
(1)當(dāng)a=2時,求證:﹣3≤f(x)≤3;
(2)若關(guān)于x的不等式f(x)≤x2﹣8x+20在R恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com