【題目】如圖,在平面直角坐標(biāo)系中,已知橢圓C(ab0)的短軸長為2,F1,F2分別是橢圓C的左、右焦點,過點F2的動直線與橢圓交于點P,Q,過點F2PQ垂直的直線與橢圓C交于AB兩點.當(dāng)直線AB過原點時,PF13PF2.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若點H(3,0),記直線PH,QH,AH,BH的斜率依次為,,,.

①若,求直線PQ的斜率;

②求的最小值.

【答案】12)①

【解析】

1)已知條件有,直線AB過原點時,PQx軸,所以△PF1F2為直角三角形,利用橢圓定義和勾股定理可求得,得橢圓方程;

(2)①設(shè)直線PQ,代入到橢圓方程得后化簡,設(shè)P(,),Q(),應(yīng)用韋達(dá)定理得,計算并代入可得;

②分類討論,當(dāng)這兩條直線中有一條與坐標(biāo)軸垂直時,,

當(dāng)兩條直線與坐標(biāo)軸都不垂直時,由①知,同理可得,計算后應(yīng)用基本不等式可得最小值.

解:(1)因為橢圓C(ab0)的短軸長為2,所以b1

當(dāng)直線AB過原點時,PQx軸,所以△PF1F2為直角三角形,

由定義知PF1PF22a,而PF13PF2,故,

,化簡得a22,

故橢圓的方程為.

2)①設(shè)直線PQ,代入到橢圓方程得:,設(shè)P(),Q(,),則,

所以

所以,

解得:,即為直線PQ的斜率.

②當(dāng)這兩條直線中有一條與坐標(biāo)軸垂直時,,

當(dāng)兩條直線與坐標(biāo)軸都不垂直時,

由①知,同理可得

,

當(dāng)且僅當(dāng)k1時取等號.

綜上,的最小值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C)的左、右焦點分別為、,離心率為,點P是橢圓C上的一個動點,且面積的最大值為.

1)求橢圓C的方程;

2)橢圓Cx軸交于AB兩點,直線與直線l分別交于點MN,試探究以為直徑的圓是否恒過定點,若是,求出所有定點的坐標(biāo):若否,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左頂點為,左、右焦點分別為,離心率為,是橢圓上的一個動點(不與左、右頂點重合),且的周長為6,點關(guān)于原點的對稱點為,直線交于點.

1)求橢圓方程;

2)若直線與橢圓交于另一點,且,求點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若曲線在點處的切線與曲線切于點,求的值;

(Ⅲ)若恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱錐中,均為等腰直角三角形,且,上一點,且平面.

1)求證:;

2)過作一平面分別交, ,,若四邊形為平行四邊形,求多面體的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國在歐洲的某孔子學(xué)院為了讓更多的人了解中國傳統(tǒng)文化,在當(dāng)?shù)嘏e辦了一場由當(dāng)?shù)厝藚⒓拥闹袊鴤鹘y(tǒng)文化知識大賽,為了了解參加本次大賽參賽人員的成績情況,從參賽的人員中隨機抽取名人員的成績(滿分100分)作為樣本,將所得數(shù)據(jù)進行分析整理后畫出頻率分布直方圖如圖所示,已知抽取的人員中成績在[50,60)內(nèi)的頻數(shù)為3.

1)求的值和估計參賽人員的平均成績(保留小數(shù)點后兩位有效數(shù)字);

2)已知抽取的名參賽人員中,成績在[8090)和[90,100]女士人數(shù)都為2人,現(xiàn)從成績在[8090)和[90,100]的抽取的人員中各隨機抽取2人,記這4人中女士的人數(shù)為,求的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,菱形與正方形所在平面相交于.

1)求作平面與平面的交線,并說明理由;

2)若垂直且相等,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線的離心率,其左焦點到此雙曲線漸近線的距離為.

1)求雙曲線的方程;

2)若過點的直線交雙曲線兩點,且以為直徑的圓過原點,求圓的圓心到拋物線的準(zhǔn)線的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|xa||x5|.

1)當(dāng)a=2時,求證:﹣3≤f(x)≤3;

2)若關(guān)于x的不等式f(x)≤x28x+20R恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案