20.“x>1”是“${log_{\frac{1}{2}}}(x+2)<0$”的一個(gè)充分不必要條件.(在“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”選擇一個(gè)填寫(xiě))

分析 解根據(jù)對(duì)數(shù)函數(shù)的不等式,求出x的范圍,結(jié)合集合的包含關(guān)系判斷即可.

解答 解:由“${log_{\frac{1}{2}}}(x+2)<0$”,解得:x>-1,
故x>1是x>-1的充分不必要條件,
故答案為:充分不必要.

點(diǎn)評(píng) 本題考查了充分必要條件,考查集合的包含關(guān)系,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知集合A=$\{x|y=\sqrt{x-1}\}$,A∩B=ϕ,則集合B不可能是( 。
A.{x|x<-1}B.{(x,y)|y=x-1}C.{y|y=-x2}D.{x|x≥-1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.計(jì)算下列各式:
(1)(2$\frac{7}{9}$)0.5+0.1-2+(2$\frac{10}{27}$)${\;}^{-\frac{2}{3}}$+$\frac{37}{48}$
(2)(a-2b-3)(-4a-1b)÷(12a-4b-2c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知Sn為數(shù)列{an}的前n項(xiàng)和,且滿足a1=1,Sn+1=4Sn+1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求證:$\sqrt{{a_1}-1}+\sqrt{{a_2}-1}+…+\sqrt{{a_n}-1}$<2n-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的圖象的一個(gè)最高點(diǎn)的坐標(biāo)為($\frac{π}{3}$,3),且當(dāng)x1+x2=$\frac{7π}{6}$時(shí),滿足f(x1)=-f(x2).
(1)當(dāng)函數(shù)f(x)的周期最大時(shí),求f(x)的單調(diào)遞增區(qū)間;
(2)在(1)的條件下,將函數(shù)f(x)的圖象上每個(gè)點(diǎn)的橫坐標(biāo)縮短為原來(lái)的$\frac{1}{2}$倍,縱坐標(biāo)不變,再將所得函數(shù)圖象向左平移$\frac{π}{12}$得到函數(shù)g(x)的圖象,求函數(shù)g(x)在[$\frac{π}{24}$,$\frac{7π}{24}$]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知定點(diǎn)A(4,0),P點(diǎn)是圓x2+y2=4上一動(dòng)點(diǎn),Q點(diǎn)是AP的中點(diǎn),求Q點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.斜率為1的動(dòng)直線L與橢圓$\frac{x^2}{4}+\frac{y^2}{2}=1$交于P,Q兩點(diǎn),M是L上的點(diǎn),且滿足|MP|•|MQ|=2,求點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知向量$\vec a$,$\vec b$的夾角為$\frac{π}{3}$,且$\vec a•(\vec a-\vec b)=1$,$|\vec a|=2$,則$|\vec b|$=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)a=sin$\frac{13π}{5}$,$b=cos(-\frac{2π}{5})$,c=tan$\frac{7π}{5}$,則( 。
A.b<a<cB.b<c<aC.a<b<cD.a<c<b

查看答案和解析>>

同步練習(xí)冊(cè)答案