【題目】已知函數(shù)f(x)

(1) 判別函數(shù)f(x)的奇偶性;

(2) 判斷函數(shù)f(x)的單調(diào)性,并根據(jù)函數(shù)單調(diào)性的定義證明你的判斷正確;

(3) 求關(guān)于x的不等式f(1x2)f(2x2)0的解集.

【答案】1奇函數(shù).2減函數(shù).3)-1x .

【解析】試題分析:(1)先確定函數(shù)定義域:-3<x<3,再根據(jù)f(-x)與-f(x)相反關(guān)系,確定函數(shù)奇偶性(2)將分離得,根據(jù)復(fù)合函數(shù)單調(diào)性判斷函數(shù)f(x)的單調(diào)性,再根據(jù)函數(shù)單調(diào)性定義進(jìn)行證明:先設(shè),再作差變形,最后判斷符號(3)利用函數(shù)奇偶性得f(2x+2)<f(x2-1),再根據(jù)函數(shù)單調(diào)性及定義域得-3<x2-1<2x+2<3,解得不等式解集

試題解析:解:(1) ∵ f(-x)=ln=-ln=-f(x),∴ f(x)是奇函數(shù).

(2) 由>0,得-3<x<3,∴ f(x)的定義域是(-3,3),f(x)=ln 是減函數(shù).

證明如下:

設(shè)-3<x1<x2<3,則,, 即f(x1)>f(x2),∴ f(x)是減函數(shù).

(3) 由(1)(2)知f(x)在定義域(-3,3)上是減函數(shù),∴ 不等式可化為f(2x+2)<f(x2-1),

∴ -3<x2-1<2x+2<3,解得-1<x< .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時(shí),求曲線處的切線方程;

(2)討論方程根的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某投資公司擬投資開發(fā)某項(xiàng)新產(chǎn)品,市場評估能獲得10~1 000萬元的投資收益.現(xiàn)公司準(zhǔn)備制定一個(gè)對科研課題組的獎(jiǎng)勵(lì)方案:獎(jiǎng)金y(單位:萬元)隨投資收益x(單位:萬元)的增加而增加,且獎(jiǎng)金不低于1萬元,同時(shí)不超過投資收益的20%.

(1) 設(shè)獎(jiǎng)勵(lì)方案的函數(shù)模型為f(x),試用數(shù)學(xué)語言表述公司對獎(jiǎng)勵(lì)方案的函數(shù)模型f(x)的基本要求;

(2) 公司能不能用函數(shù)f(x)=+2作為預(yù)設(shè)的獎(jiǎng)勵(lì)方案的模型函數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)幾何體的三視圖如下圖所示,其中主視圖與左視圖是腰長為6的等腰直角三角形,俯視圖是正方形

請畫出該幾何體的直觀圖,并求出它的體積;

用多少個(gè)這樣的幾何體可以拼成一個(gè)棱長為6的正方體ABCDA1B1C1D1? 如何組拼?試證明你的結(jié)論;

的情形下,設(shè)正方體ABCDA1B1C1D1的棱CC1的中點(diǎn)為E, 求平面AB1E與平面ABC所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

討論的單調(diào)性;

存在兩個(gè)極值點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若,關(guān)于的方程有三個(gè)不同的實(shí)根,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,游客從某旅游景區(qū)的景點(diǎn)處下上至處有兩種路徑一種是從沿直線步行到另一種是先從沿索道乘纜車到,然后從沿直線步行到.現(xiàn)有甲、乙兩位游客從處下山,甲沿勻速步行,速度為.在甲出發(fā),乙從乘纜車到處停留,再從勻速步行到,假設(shè)纜車勻速直線運(yùn)動(dòng)的速度為山路長為1260,經(jīng)測量

1求索道的長;

2問:乙出發(fā)多少,乙在纜車上與甲的距離最短?

3為使兩位游客在處互相等待的時(shí)間不超過,乙步行的速度應(yīng)控制在什么范圍內(nèi)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體中,是等邊三角形,是等腰直角三角形,,平面平面,平面,點(diǎn)的中點(diǎn),連接

(1)求證:平面;

(2)若,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】觀察下列方程,并回答問題:

;②;③;④;…

(1)請你根據(jù)這列方程的特點(diǎn)寫出第個(gè)方程;

(2)直接寫出第2009個(gè)方程的根;

(3)說出這列方程的根的一個(gè)共同特點(diǎn).

查看答案和解析>>

同步練習(xí)冊答案