8.等差數(shù)列{an}中,若a5=7,則( 。
A.S9=63B.S11=63C.S9=35D.S11=77

分析 由等差數(shù)列的求和公式和性質(zhì)可得S9=9a5,代值計(jì)算可得.

解答 解:∵Sn為等差數(shù)列{an}的前n項(xiàng)和,且a5=7,
∴S9=$\frac{9({a}_{1}+{a}_{9})}{2}$=9a5=9×7=63,
故選:A

點(diǎn)評(píng) 本題考查等差數(shù)列的求和公式和性質(zhì),屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.如圖,網(wǎng)格紙上正方形小格的邊長(zhǎng)為1(表示1cm),圖中粗線畫出的是一個(gè)四面體的三視圖,則該四面體外接球的體積與四面體的體積的比值為(  )
A.2$\sqrt{2}$πB.3$\sqrt{3}$πC.D.2$\sqrt{5}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.在直角梯形ABCD中,AD∥BC,∠A=90°,AB=2AD,若將△ABD沿直線BD折成△A′BD,使得A′D⊥BC,則直線A′B與平面BCD所成角的正弦值是$\frac{\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知△ABC的外心為O,且2$\overrightarrow{OA}$+3$\overrightarrow{OB}$+4$\overrightarrow{OC}$=$\overrightarrow{0}$,則cos∠BAC的值是$±\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.在等差數(shù)列{an}中,a1=23,d=-2,求數(shù)列{|an|}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知數(shù)列{an}滿足a1=5,a2=13,an+2=5an+1-6an,則使該數(shù)列的n項(xiàng)和Sn不小于2016的最小自然數(shù)n等于7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,△BCD與△MCD都是正三角形,平面MCD⊥平面BCD,AB⊥平面BCD.
(Ⅰ)求證:CD⊥平面ABM;
(Ⅱ)若∠ACB=60°,求三棱錐A-BCD與三棱錐M-ACD的體積比;
(Ⅲ)若AB=2$\sqrt{3}$,CD=2,求直線DM與平面ACM所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知圓C的圓心在射線y=x一4(y≥0)上,在x軸上截得的弦長(zhǎng)為4,且過(guò)點(diǎn)(2,0).求圓C的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知函數(shù)f(x)=x+$\frac{25+a}{x}$+a(a∈R),若對(duì)于任意的x∈(0,+∞),f(x)≥-2恒成立,則a的取值范圍是[-4$\sqrt{6}$,+∞).

查看答案和解析>>

同步練習(xí)冊(cè)答案