已知圓C1:x2+y2-4x+2y=0,C2:x2+y2-2y-4=0交于A、B兩點;
(1)求過A、B兩點的直線方程;
(2)求過A、B兩點,且圓心在直線2x+4y=1上的圓的方程.
分析:(1)對兩圓的方程作差即可得出兩圓的公共弦所在的直線方程;
(2)先求兩圓的交點,進而可求圓的圓心與半徑,從而可求圓的方程.
解答:解:(1)將兩圓的方程作差即可得出兩圓的公共弦所在的直線方程,即
(x2+y2-4x+2y)-(x2+y2-2y-4)=0
即x-y-1=0
(2)由(1)得y=x-1代入圓C1:x2+y2-4x+2y=0,化簡可得2x2-4x-1=0
∴x=
6
2

當(dāng)x=
2+
6
2
時,y=
6
2
;當(dāng)x=
2-
6
2
時,y=-
6
2

設(shè)所求圓的圓心坐標(biāo)為(a,b),則
(a-
2+
6
2
)
2
+(b-
6
2
)
2
=(a-
2-
6
2
)
2
+(b+
6
2
)
2
2a+4b=1

a=
3
2
,b=-
1
2

r2=
7
2

∴過兩圓的交點且圓心在直線2x+4y=1上的圓的方程為(x-
3
2
)2+(y+
1
2
)2=
7
2
點評:本題重點考查兩圓的位置關(guān)系,考查兩圓的公共弦,考查圓的方程,解題的關(guān)鍵是確定圓的圓心與半徑,綜合性強.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•惠州二模)已知圓C1:x2+y2=2和圓C2,直線l與C1切于點M(1,1),圓C2的圓心在射線2x-y=0(x≥0)上,且C2經(jīng)過坐標(biāo)原點,如C2被l截得弦長為4
3

(1)求直線l的方程;
(2)求圓C2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C1x2+y2=2,直線l與圓C1相切于點A(1,1);圓C2的圓心在直線x+y=0上,且圓C2過坐標(biāo)原點.
(1)求直線l的方程;
(2)若圓C2被直線l截得的弦長為8,求圓C2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C1x2+y2=10與圓C2x2+y2+2x+2y-14=0
(1)求證:圓C1與圓C2相交;
(2)求兩圓公共弦所在直線的方程;
(3)求經(jīng)過兩圓交點,且圓心在直線x+y-6=0上的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C1:x2+(y+5)2=5,設(shè)圓C2為圓C1關(guān)于直線l對稱的圓,則在x軸上是否存在點P,使得P到兩圓的切線長之比為
2
?薦存在,求出點P的坐標(biāo);若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•寧波模擬)如圖,已知圓C1x2+(y-1)2=4和拋物線C2:y=x2-1,過坐標(biāo)原點O的直線與C2相交于點A、B,定點M坐標(biāo)為(0,-1),直線MA,MB分別與C1相交于點D、E.
(1)求證:MA⊥MB.
(2)記△MAB,△MDE的面積分別為S1、S2,若
S1S2
,求λ的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案