A. | [${\frac{1}{2}$,2] | B. | [0,1] | C. | [1,2] | D. | [0,+∞) |
分析 因?qū)θ我鈱?shí)數(shù)a、b、c,都存在以f(a)、f(b)、f(c)為三邊長(zhǎng)的三角形,則f(a)+f(b)>f(c)恒成立,將f(x)解析式用分離常數(shù)法變形,由均值不等式可得分母的取值范圍,整個(gè)式子的取值范圍由t-1的符號(hào)決定,故分為三類(lèi)討論,根據(jù)函數(shù)的單調(diào)性求出函數(shù)的值域,然后討論k轉(zhuǎn)化為f(a)+f(b)的最小值與f(c)的最大值的不等式,進(jìn)而求出實(shí)數(shù)k 的取值范圍.
解答 解:由題意可得f(a)+f(b)>f(c)對(duì)于?a,b,c∈R都恒成立,
由于f(x)=$\frac{{{2^x}+t}}{{{2^x}+1}}$=1+$\frac{t-1}{{2}^{x}+1}$,
①當(dāng)t-1=0,f(x)=1,此時(shí),f(a),f(b),f(c)都為1,構(gòu)成一個(gè)等邊三角形的三邊長(zhǎng),
滿(mǎn)足條件.
②當(dāng)t-1>0,f(x)在R上是減函數(shù),1<f(a)<1+t-1=t,
同理1<f(b)<t,1<f(c)<t,
由f(a)+f(b)>f(c),可得 2≥t,解得1<t≤2.
③當(dāng)t-1<0,f(x)在R上是增函數(shù),t<f(a)<1,
同理t<f(b)<1,t<f(c)<1,
由f(a)+f(b)>f(c),可得 2t≥1,解得1>t≥$\frac{1}{2}$.
綜上可得,$\frac{1}{2}$≤t≤2,
故實(shí)數(shù)t的取值范圍是[$\frac{1}{2}$,2],
故選A:.
點(diǎn)評(píng) 本題主要考查了求參數(shù)的取值范圍,以及構(gòu)成三角形的條件和利用函數(shù)的單調(diào)性求函數(shù)的值域,同時(shí)考查了分類(lèi)討論的思想,屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{2}$ | B. | $\frac{2π}{3}$ | C. | $\frac{π}{3}$或$\frac{2π}{3}$ | D. | $\frac{π}{6}$或$\frac{5π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 無(wú)最大值 | |
B. | 極大值為2 | |
C. | 極小值為$\frac{2e}{3}$ | |
D. | 函數(shù)g(x)=f(x)-2的圖象與x軸只有兩個(gè)交點(diǎn) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 10+5$\sqrt{3}$ | B. | 15 | C. | 10+2$\sqrt{3}$ | D. | 20 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com