19.在△ABC中,a,b,c分別是角A,B,C所對(duì)的邊,已知a+b=10,cosC是方程所2x2-3x-2=0的一個(gè)根,求△ABC周長的最。ā 。
A.10+5$\sqrt{3}$B.15C.10+2$\sqrt{3}$D.20

分析 先由條件求得 cosC=-$\frac{1}{2}$,再由余弦定理可得 c2=(a-5)2+75,利用二次函數(shù)的性質(zhì)求得c的最小值,即可求得△ABC周長a+b+c 的最小值.

解答 解:解方程2x2-3x-2=0可得x=2,或 x=-$\frac{1}{2}$.
∵在△ABC中,a+b=10,cosC是方程2x2-3x-2=0的一個(gè)根,
∴cosC=-$\frac{1}{2}$.
由余弦定理可得 c2=a2+b2-2ab•cosC=(a+b)2-ab,
∴c2=(a-5)2+75.
故當(dāng)a=5時(shí),c最小為$\sqrt{75}$=5$\sqrt{3}$,
故△ABC周長a+b+c 的最小值為 10+5$\sqrt{3}$.
故選:A.

點(diǎn)評(píng) 本題主要考查一元二次方程的解法、二次函數(shù)的性質(zhì)以及余弦定理的應(yīng)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知數(shù)列{an}中,a1=a>0,an+1=f(an)(n∈N*),其f(x)=$\frac{2x}{x+1}$.
(1)求a2,a3,a4;
(2)猜想數(shù)列{an}的一個(gè)通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.△ABC中,sinA:sinB:sinC=$\sqrt{2}$:1:2,則cosA=$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.對(duì)于函數(shù)f(x),若任給實(shí)數(shù)a、b、c,f(a),f(b),f(c)為某一三角形三邊長,則稱f(x)為“可構(gòu)造三角形函數(shù)”.已知函數(shù)f(x)=$\frac{{{2^x}+t}}{{{2^x}+1}}$是“可構(gòu)造三角形函數(shù)”,則實(shí)數(shù)t的取值范圍是( 。
A.[${\frac{1}{2}$,2]B.[0,1]C.[1,2]D.[0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.如圖所示是沿圓錐的兩條母線將圓錐削去一部分后所得幾何體的三視圖,其體積為$\frac{16π}{9}+\frac{{2\sqrt{3}}}{3}$,則圓錐的母線長為2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=$\frac{1}{2}$+lnx,g(x)=$\frac{1}{2}$x2
(1)設(shè)h(x)=f(x)+g(x),求曲線y=h(x)在點(diǎn)(1,h(1))處的切線方程;
(2)證明:f(x)≤g(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)f(x)=$\frac{{{a^{2x}}}}{{a+{a^{2x}}}}$(a>0,a≠1),則f($\frac{1}{2016}$)+f($\frac{2}{2016}$)+…+f($\frac{2015}{2016}$)=$\frac{2015}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.n∈N*,${C}_{n}^{0}$+3${C}_{n}^{1}$+…+(2n+1)$C_n^n$=(n+1)2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且滿足(2a-c)cosB=bcosC.
(Ⅰ) 求角B的大;
(Ⅱ) 設(shè)$\vec m$=(sinA,cos2A),$\vec n$=(4k,1)(k>1),且$\vec m$•$\vec n$的最大值是7,求k的值.

查看答案和解析>>

同步練習(xí)冊答案