已知|
p
|=2
2
,|
q
|=3,
p
q
夾角為
π
4
,則以
p
,
q
為鄰邊的平行四邊形的一條對角線的長度為( 。
A、
5
B、5
C、9
D、27
考點:數(shù)量積表示兩個向量的夾角
專題:平面向量及應(yīng)用
分析:由模長公式分別可得|
p
+
q
|2和|
p
-
q
|2的值,結(jié)合選項可得.
解答: 解:由題意可得
p
q
=2
2
×3×
2
2
=6,
∴|
p
+
q
|2=
p
2
+2
p
q
+
q
2
=29,
∴|
p
-
q
|2=
p
2
-2
p
q
+
q
2
=5,
∴以
p
,
q
為鄰邊的平行四邊形的對角線的長度分別為
29
5

故選:A
點評:本題考查向量的夾角,涉及向量的模長公式,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

把5本不同的書全部分給4個學(xué)生,每個學(xué)生至少一本,不同的分發(fā)種數(shù)為
 
.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是(-∞,+∞)上的奇函數(shù),f(x+2)=-f(x)當(dāng)x∈[0,1]時f(x)=x,那么f(7.5)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中,正確的個數(shù)為( 。
①“a+5是無理數(shù)”是“a是無理數(shù)”的充要條件;
②“x<5”是“x<3”的充分不必要條件;
③過點P(2,3)且在兩軸上的截距相等的直線方程是x+y-5=0.
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
log2x-3
的定義域是( 。
A、(1,+∞)
B、[1,+∞)
C、(8,+∞)
D、[8,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
x2
4
-
y2
12
=1的焦點到漸近線的距離為( 。
A、2
B、
3
C、3
D、2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的實軸長為6,F(xiàn)(5,0)是雙曲線的一個焦點,則雙曲線的漸近線方程為( 。
A、y=±
3
4
x
B、y=±
4
3
x
C、y=±
9
16
x
D、y=±
16
9
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)
(1+i)2
i2
=(  )
A、2iB、-2iC、2D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給定兩個向量
a
=(3,4),
b
=(x,1),若
a
b
,則x的值等于( 。
A、-
4
3
B、-
3
4
C、
3
4
D、
4
3

查看答案和解析>>

同步練習(xí)冊答案