5.若|z-2i|+|z-z0|=4表示的動(dòng)點(diǎn)的軌跡是橢圓,則|z0|的取值范圍是[0.6).

分析 利用橢圓的定義,判斷z0的軌跡方程,然后求解即可.

解答 解:|z-2i|+|z-z0|=4表示的動(dòng)點(diǎn)的軌跡是橢圓,由橢圓的定義可知,z0到(0,2)的距離小于4.z0的軌跡是以(0.2)為圓心4為半徑的圓的內(nèi)部部分,|z0|的取值范圍是:[0,6).
故答案為:[0,6).

點(diǎn)評(píng) 本題考查復(fù)數(shù)的幾何意義,軌跡方程的求法,考查分析問(wèn)題解決問(wèn)題的能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.求1,1+2,1+2+3,1+2+3+4,1+2+3+4+5,1+2+3+4+…+n,…的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.如圖,在?ABCD中,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow$,試用$\overrightarrow{a}$,$\overrightarrow$表示向量$\overrightarrow{AO}$,$\overrightarrow{DB}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.在y軸上的截距為-2,且與x軸平行的直線(xiàn)的方程為( 。
A.x=-2B.x+y+2=0C.y=-2D.x-y-2=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)(n,$\frac{{S}_{n}}{n}$)在直線(xiàn)y=2x+2上,數(shù)列{bn}的前n項(xiàng)和為T(mén)n,且Tn=2bn-3,n∈N*
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)設(shè)cn=$\frac{1}{(\frac{{a}_{n}}{2}-1)(\frac{{a}_{n}}{2}+1)}$,數(shù)列{cn}的前n項(xiàng)和為An,求證:An≥$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知a>0,b>0,記A=$\sqrt{a}$+$\sqrt$,B=a+b.
(1)求$\sqrt{2}$A-B的最大值;
(2)若ab=4,是否存在a,b,使得A+B=6?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.若函數(shù)f(x)=$\sqrt{x-1}$,則函數(shù)f(2x)的定義域是( 。
A.RB.[1,+∞)C.[0,+∞)D.(-∞,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知在△ABC中,a,b,c為角A,B,C所對(duì)的邊,且2cos2$\frac{C}{2}$+(cosB-$\sqrt{3}$sinB)cosA=1.
(Ⅰ)求角A的值;
(Ⅱ)求f(x)=4cosxcos(x-A)在x∈[0,$\frac{π}{2}$]的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率等于$\frac{1}{2}$,它的一個(gè)短軸端點(diǎn)是(0,2$\sqrt{3}$).
(1)求橢圓C的方程;
(2)P(2,3)、Q(2,-3)是橢圓上兩點(diǎn),A、B是橢圓位于直線(xiàn)PQ兩側(cè)的兩動(dòng)點(diǎn),
①若直線(xiàn)AB的斜率為$\frac{1}{2}$,求四邊形APBQ面積的最大值;
②當(dāng)A、B運(yùn)動(dòng)時(shí),滿(mǎn)足∠APQ=∠BPQ,試問(wèn)直線(xiàn)AB的斜率是否為定值,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案