數(shù)列{an}中,an<0,前n項(xiàng)和Sn=-
1
4
(an-1)2

(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=
1
n(3-an)
(n∈N+),Tn=b1+b2+…+bn,若對(duì)任意n∈N+,總存在m∈[-1,1]使Tn<m2-2m+t+
1
2
成立,求出t的取值范圍.
考點(diǎn):數(shù)列與不等式的綜合,數(shù)列的求和
專題:等差數(shù)列與等比數(shù)列,點(diǎn)列、遞歸數(shù)列與數(shù)學(xué)歸納法
分析:本題(1)將和式轉(zhuǎn)化不項(xiàng)式,研究數(shù)列的通項(xiàng)公式,注意要分類討論;
(2)先通過裂項(xiàng)法求和,再研究能成立問題,求出關(guān)于m的函數(shù)的最大值,得到本題結(jié)論.
解答: 解:(1)當(dāng)n=1時(shí),
S1=-
1
4
(a1-1)2=a1
,
∴a1=-1.
當(dāng)n≥2時(shí),
an=Sn-Sn-1=-
1
4
(an-1)2+
1
4
(an-1-1)2
,
4an=-
a
2
n
+2an-1+
a
2
n-1
-2an-1+1

∴an-an-1=-2(n≥2).
∴數(shù)列{an}是等差數(shù)列,
∴an=-2n+1.
(2)∵bn=
1
n(3-a n)
=
1
2n(n+1)
=
1
2
(
1
n
-
1
n+1
)

Tn=
1
2
(1-
1
2
)+
1
2
(
1
2
-
1
3
)+…+
1
2
(
1
n
-
1
n+1
)

=
1
2
-
1
2n+2

∴Tn
1
2

設(shè)f(m)=m2-2m+t+
1
2
,
函數(shù)f(m)在m∈[-1,1]內(nèi)的最大值為t+
7
2
,
t+
7
2
1
2
,
∴t≥-3.
點(diǎn)評(píng):本題考查了數(shù)列前n項(xiàng)和與通項(xiàng)公式的關(guān)系、裂項(xiàng)法求和、能成立問題,本題難度適中,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在四棱錐P-ABCD中,AD∥BC,∠ABC=∠APB=90°,
AB
=4
MB
,且PM⊥CD,AB=BC=2PB=2AD.
(1)證明:面PAB⊥面ABCD;
(2)求直線DM與平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,P是正方體ABCD-A1B1C1D1中BC1上的動(dòng)點(diǎn),下列命題:
①AP⊥B1C;
②BP與CD1所成的角是60°;
VP-AD1C為定值;
④B1P∥平面D1AC;
⑤二面角P-AB-C的平面角為45°.
其中正確命題的個(gè)數(shù)有( 。
A、2個(gè)B、3個(gè)C、4個(gè)D、5個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱柱ABC-A′B′C′中,底面ABC是正三角形,AA′⊥底面ABC,且AB=1,AA′=2,則直線BC′與平面ABB′A′所成角的正弦值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,a1=3,其前n項(xiàng)和為Sn,等比數(shù)列{bn}的各項(xiàng)均為正數(shù),b1=1,其前n項(xiàng)和為Tn,且b2+S2=11,2S3=9b3
(1)求數(shù)列{an}和數(shù)列{bn}的通項(xiàng);
(2)問是否存在正整數(shù)m,n,r,使得Tn=am+r•bn成立?如果存在,請(qǐng)求出m,n,r的關(guān)系式;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的中心是原點(diǎn),焦點(diǎn)到漸近線的距離為2
3
,一條準(zhǔn)線方程為y=-1,則其漸近線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知各項(xiàng)均為正數(shù)的等差數(shù)列{an}的前20項(xiàng)和為100,那么a2•a19的最大值是( 。
A、50
B、25
C、100
D、4
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在圖1等邊三角形ABC中,AB=2,E是線段AB上的點(diǎn)(除點(diǎn)A外),過點(diǎn)E作EF⊥AC于點(diǎn)F,將△AEF 沿EF折起到△PEF(點(diǎn)A與點(diǎn)P重合,如圖2),使得∠PFC=
π
3

(1)求證:EF⊥PC;
(2)試問,當(dāng)點(diǎn)E在線段AB上移動(dòng)時(shí),二面角P-EB-C的大小是否為定值?若是,求出這個(gè)二面角的平面角的正切值,若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

冪函數(shù)y=f(x)的圖象經(jīng)過點(diǎn)(2,8),若f(a)=27則a的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案