【題目】已知函數(shù),,且曲線與在處有相同的切線.
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)求證:在上恒成立;
(Ⅲ)當(dāng)時(shí),求方程在區(qū)間內(nèi)實(shí)根的個(gè)數(shù).
【答案】(Ⅰ);(Ⅱ)證明見(jiàn)解析;(Ⅲ)2.
【解析】
試題分析:
(Ⅰ)函數(shù)有相同的切線,則,,據(jù)此計(jì)算可得;
(Ⅱ)構(gòu)造函數(shù),令,原問(wèn)題等價(jià)于在上恒成立,討論函數(shù)的單調(diào)性可得,即在上恒成立.
(Ⅲ)構(gòu)造函數(shù),其中,結(jié)合導(dǎo)函數(shù)討論函數(shù)的單調(diào)性有 .構(gòu)造函數(shù),則在內(nèi)單調(diào)遞減,,據(jù)此討論可得在區(qū)間內(nèi)有兩個(gè)零點(diǎn),即方程在區(qū)間內(nèi)實(shí)根的個(gè)數(shù)為2.
試題解析:
(Ⅰ)∵,,,
∴.
∵,,
∴,.
∵,即,
∴.
(Ⅱ)證明:設(shè),
.
令,則有.
當(dāng)變化時(shí),的變化情況如下表:
∴,即在上恒成立.
(Ⅲ)設(shè),其中,
.
令,則有.
當(dāng)變化時(shí),的變化情況如下表:
∴ .
,
設(shè),其中,則,
∴在內(nèi)單調(diào)遞減,,
∴,故,而.
結(jié)合函數(shù)的圖象,可知在區(qū)間內(nèi)有兩個(gè)零點(diǎn),
∴方程在區(qū)間內(nèi)實(shí)根的個(gè)數(shù)為2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若對(duì)任意, 有唯一確定的與之對(duì)應(yīng),則稱為關(guān)于, 的二元函數(shù),現(xiàn)定義滿足下列性質(zhì)的為關(guān)于實(shí)數(shù), 的廣義“距離”.
()非負(fù)性: ,當(dāng)且僅當(dāng)時(shí)取等號(hào);
()對(duì)稱性: ;
()三角形不等式: 對(duì)任意的實(shí)數(shù)均成立.
給出三個(gè)二元函數(shù):①;②;③,
則所有能夠成為關(guān)于, 的廣義“距離”的序號(hào)為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“一帶一路”是“絲綢之路經(jīng)濟(jì)帶”和“21世紀(jì)海上絲綢之路”的簡(jiǎn)稱.某市為了了解人們對(duì)“一帶一路”的認(rèn)知程度,對(duì)不同年齡和不同職業(yè)的人舉辦了一次“一帶一路”知識(shí)競(jìng)賽,滿分100分(90分及以上為認(rèn)知程度高).現(xiàn)從參賽者中抽取了人,按年齡分成5組,第一組: ,第二組: ,第三組: ,第四組: ,第五組: ,得到如圖所示的頻率分布直方圖,已知第一組有6人.
(1)求;
(2)求抽取的人的年齡的中位數(shù)(結(jié)果保留整數(shù));
(3)從該市大學(xué)生、軍人、醫(yī)務(wù)人員、工人、個(gè)體戶 五種人中用分層抽樣的方法依次抽取6人,42人,36人,24人,12人,分別記為1~5組,從這5個(gè)按年齡分的組和5個(gè)按職業(yè)分的組中每組各選派1人參加知識(shí)競(jìng)賽,分別代表相應(yīng)組的成績(jī),年齡組中1~5組的成績(jī)分別為93,96,97,94,90,職業(yè)組中1~5組的成績(jī)分別為93,98,94,95,90.
(Ⅰ)分別求5個(gè)年齡組和5個(gè)職業(yè)組成績(jī)的平均數(shù)和方差;
(Ⅱ)以上述數(shù)據(jù)為依據(jù),評(píng)價(jià)5個(gè)年齡組和5個(gè)職業(yè)組對(duì)“一帶一路”的認(rèn)知程度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠生產(chǎn)甲乙兩種產(chǎn)品所得的利潤(rùn)分別為和 (萬(wàn)元),它們與投入資金 (萬(wàn)元)的關(guān)系為:.今將300萬(wàn)資金投入生產(chǎn)甲乙兩種產(chǎn)品,并要求對(duì)甲乙兩種產(chǎn)品的投入資金都不低于75萬(wàn)元.
(1)設(shè)對(duì)乙種產(chǎn)品投入資金 (萬(wàn)元),求總利潤(rùn) (萬(wàn)元)關(guān)于的函數(shù);
(2)如何分配投入資金,才能使總利潤(rùn)最大?并求出最大總利潤(rùn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的各項(xiàng)均為正數(shù), 是數(shù)列的前項(xiàng)和,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)已知,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,以橢圓的短軸為直徑的圓與直線相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)橢圓過(guò)右焦點(diǎn)的弦為、過(guò)原點(diǎn)的弦為,若,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),其中.
(1)討論的極值點(diǎn)的個(gè)數(shù);
(2)若,,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“微信運(yùn)動(dòng)”已成為當(dāng)下熱門(mén)的健身方式,小王的微信朋友圈內(nèi)也有大量好友參與了“微信運(yùn)動(dòng)”,他隨機(jī)選取了其中的40人(男、女各20人),記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:
(1)若采用樣本估計(jì)總體的方式,試估計(jì)小王的所有微信好友中每日走路步數(shù)超過(guò)5000步的概率;
(2)已知某人一天的走路步數(shù)超過(guò)8000步被系統(tǒng)評(píng)定“積極型”,否則為“懈怠型”,根據(jù)題意完成下面的列聯(lián)表,并據(jù)此判斷能否有95%以上的把握認(rèn)為“評(píng)定類型”與“性別”有關(guān)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),其中.
(Ⅰ)當(dāng)時(shí),討論函數(shù)的單調(diào)性;
(Ⅱ)若函數(shù)僅在處有極值,求的取值范圍;
(Ⅲ)若對(duì)于任意的,不等式在上恒成立,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com