16.已知f(x)=$\left\{\begin{array}{l}3{e}^{x-1},x<3\\ lo{g}_{3}({x}^{2}-6),x≥3\end{array}\right.$,則f(f($\sqrt{15}$))的值為3e.

分析 根據(jù)f(x)=$\left\{\begin{array}{l}3{e}^{x-1},x<3\\ lo{g}_{3}({x}^{2}-6),x≥3\end{array}\right.$,將x=$\sqrt{15}$,代入可得答案.

解答 解:∵f(x)=$\left\{\begin{array}{l}3{e}^{x-1},x<3\\ lo{g}_{3}({x}^{2}-6),x≥3\end{array}\right.$,
∴f($\sqrt{15}$)=log3(15-6)=2,
∴f(f($\sqrt{15}$))=3e,
故答案為:3e.

點評 本題考查的知識點是分段函數(shù)的應(yīng)用,函數(shù)求值,難度不大,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,四棱錐P-ABCD的底面ABCD是菱形,∠BCD=60°,PA⊥面ABCD,E 是AB的中點,F(xiàn)是PC的中點.
(Ⅰ)求證:DE⊥面PAB
(Ⅱ)求證:BF∥面PDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知命題p:直線x+y-a=0與圓(x-1)2+y2=1有公共點,命題q:直線y=ax+2的傾斜角不大于45°,若命題p∧q為假命題,p∨q為真命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖是各棱長均為2的正三棱柱ABC-A1B1C1的直觀圖,則此三棱柱側(cè)(左)視圖的面積為( 。
A.2$\sqrt{2}$B.4C.$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)復(fù)數(shù)z的共軛復(fù)數(shù)為$\overline z$,i為虛數(shù)單位,若z=1+i,則$\frac{3+2\overline z}{i}$=(  )
A.-2-5iB.-2+5iC.2+5iD.2-5i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知a>0關(guān)于x的二項式($\sqrt{x}$+$\frac{a}{\root{3}{x}}$)n展開式的二項式系數(shù)之和為32,常數(shù)項為80,則展開式的各項系數(shù)和=243.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若雙曲線的方程為x2-2y2=4,則它的右焦點的坐標(biāo)為( 。
A.$({\sqrt{6},0})$B.$({\sqrt{2},0})$C.(6,0)D.(2,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知橢圓C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)過點$(2,\sqrt{3})$,且它的離心率e=$\frac{1}{2}$.直線l:y=kx+t與橢圓C1交于M、N兩點.
(Ⅰ)求橢圓的標(biāo)準方程;
(Ⅱ)若直線l與圓C2:(x-1)2+y2=1相切,橢圓上一點P滿足$\overrightarrow{OM}+\overrightarrow{ON}=λ\overrightarrow{OP}$,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在△ABC中,角A、B、C對邊分別是a、b、c,且滿足$2\overrightarrow{AB}•\overrightarrow{AC}={a^2}-{(b-c)^2}$.
(Ⅰ)求角A的大小
(Ⅱ)若a=4,△ABC的面積為$4\sqrt{3}$,求b,c.

查看答案和解析>>

同步練習(xí)冊答案