分析 將已知等式兩邊平方,利用同角三角函數(shù)基本關(guān)系式化簡可得cosθ(3cosθ+4sinθ)=0,從而可得cosθ=0,或3cosθ+4sinθ=0,分類討論,即可得解.
解答 解:∵sinθ+2cosθ=1,
∴兩邊平方可得:sin2θ+4cos2θ+4sinθcosθ=1,
∴3cos2θ+4sinθcosθ=0,
∴cosθ(3cosθ+4sinθ)=0,
∴cosθ=0,或3cosθ+4sinθ=0,
若cosθ=0,則sinθ=1,可得:$\frac{sinθ-cosθ}{sinθ+cosθ}$=$\frac{1-0}{1+0}$=1;
若3cosθ+4sinθ=0,即:tanθ=-$\frac{3}{4}$,可得:$\frac{sinθ-cosθ}{sinθ+cosθ}$=$\frac{tanθ-1}{tanθ+1}$=$\frac{-\frac{3}{4}-1}{-\frac{3}{4}+1}$=-7.
故答案為:-7或1(算出一個(gè)給2分).
點(diǎn)評 本題主要考查了同角三角函數(shù)基本關(guān)系式在三角函數(shù)化簡求值中的應(yīng)用,考查了轉(zhuǎn)化思想和分類討論思想的應(yīng)用,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 50 | B. | 35 | C. | 20 | D. | 15 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com