分析 通過計算確定數(shù)列{an}是以2為周期的周期數(shù)列,進而分兩種情況解不等式即得結(jié)論.
解答 解:∵an=-$\frac{1}{\frac{1}{{a}_{n-1}}+1}$(n≥2,且n∈N*),
∴$\frac{1}{{a}_{n}}$=-$\frac{1}{{a}_{n-1}}$-1,
又∵$\frac{1}{{a}_{1}}$=$\frac{1}{2}$,
∴$\frac{1}{{a}_{2}}$=-1-$\frac{1}{{a}_{1}}$=-$\frac{3}{2}$,即a2=-$\frac{2}{3}$,
$\frac{1}{{a}_{3}}$=-1-$\frac{1}{{a}_{2}}$=$\frac{1}{2}$,即a3=2,
…
∴數(shù)列{an}是以2為周期的周期數(shù)列,
又∵a1+a2=2-$\frac{2}{3}$=$\frac{4}{3}$,
∴Sn=$\left\{\begin{array}{l}{\frac{2}{3}n+\frac{4}{3},}&{n為奇數(shù)}\\{\frac{2}{3}n,}&{n為偶數(shù)}\end{array}\right.$,
當n為奇數(shù)時,Sn>2016即$\frac{2}{3}$n+$\frac{4}{3}$>2016,
解得:n>3022;
當n為偶數(shù)時,Sn>2016即$\frac{2}{3}$n>2016,
解得:n>3024;
綜上所述,使得Sn>2016的最小n值是3023,
故答案為:3023.
點評 本題考查數(shù)列的通項,找出周期是解決本題的關(guān)鍵,注意解題方法的積累,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | A與B是互斥而非對立事件 | B. | A與B是對立事件 | ||
C. | B與C是互斥而非對立事件 | D. | B與C是對立事件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [-$\frac{1}{8}$,1] | B. | [0,1] | C. | [0,$\frac{1}{4}$] | D. | [-$\frac{1}{9}$,1] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
選手年齡 | [5,15) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) |
頻數(shù) | 2 | 12 | 16 | 10 | 7 | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 若m⊥α,m?β,則α⊥β | |
B. | 若m?α,n?α,m∥β,n∥β,則α∥β | |
C. | 若m?α,n?α,m,n是異面直線,那么n與α相交 | |
D. | 若α∩β=m,n∥m,則n∥α且n∥β |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3}{5}$ | B. | $\frac{7}{50}$ | C. | $\frac{7}{25}$ | D. | -$\frac{7}{25}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com