8.已知向量$\overrightarrow a$,$\overrightarrow b$滿足|${\overrightarrow a}$|=2,|${\overrightarrow b}$|=3,且$\overrightarrow a$與$\overrightarrow a$+$\overrightarrow b$夾角的余弦值為$\frac{1}{3}$,則$\overrightarrow a$•$\overrightarrow b$可以是( 。
A.4B.-3C.$-2\sqrt{3}$D.-2

分析 由已知展開$\overrightarrow{a}•(\overrightarrow{a}+\overrightarrow)$,代入|${\overrightarrow a}$|=2,|${\overrightarrow b}$|=3,且$\overrightarrow a$與$\overrightarrow a$+$\overrightarrow b$夾角的余弦值為$\frac{1}{3}$,即可求得$\overrightarrow a$•$\overrightarrow b$.

解答 解:由已知向量量$\overrightarrow a$,$\overrightarrow b$滿足|${\overrightarrow a}$|=2,|${\overrightarrow b}$|=3,且$\overrightarrow a$與$\overrightarrow a$+$\overrightarrow b$夾角的余弦值為$\frac{1}{3}$,
得$\overrightarrow{a}•(\overrightarrow{a}+\overrightarrow)=|\overrightarrow{a}|\\;|\overrightarrow{a}+\overrightarrow|×\frac{1}{3}$$|\overrightarrow{a}+\overrightarrow|×\frac{1}{3}$=$\frac{2}{3}\sqrt{|\overrightarrow{a}{|}^{2}+|\overrightarrow{|}^{2}+2\overrightarrow{a}•\overrightarrow}$=$\frac{2}{3}\sqrt{4+9+2\overrightarrow{a}•\overrightarrow}$,
即$|\overrightarrow{a}{|}^{2}+\overrightarrow{a}•\overrightarrow=\frac{2}{3}×\sqrt{13+2\overrightarrow{a}•\overrightarrow}$,
∴$\overrightarrow{a}•\overrightarrow=-2$或$\overrightarrow{a}•\overrightarrow=-\frac{46}{9}$.
故選:D.

點評 本題考查平面向量的數(shù)量積運算,考查向量模的求法,是中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

18.已知A與B分別是x軸和y軸上的點,線段AB的長度是5,O是坐標原點,若△OAB的面積等于6,求點A和B的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知f(x)=ax過(1,3),則以下函數(shù)圖象正確的是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知函數(shù)f(x)=asinx+bcosx(a,b為常數(shù),a≠0,x∈R)在x=$\frac{π}{3}$處取得最大值,則函數(shù)y=f(x+$\frac{π}{3}$)是( 。
A.奇函數(shù)且它的圖象關(guān)于點(π,0)對稱
B.奇函數(shù)且它的圖象關(guān)于點($\frac{3π}{2}$,0)對稱
C.偶函數(shù)且它的圖象關(guān)于點($\frac{3π}{2}$,0)對稱
D.偶函數(shù)且它的圖象關(guān)于點(π,0)對稱

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=lnx+ax(a∈R).
(1)當a=-$\frac{1}{3}$,求函數(shù)f(x)在區(qū)間[e,e2]上的極值;
(2)當a=1時,函數(shù)g(x)=f(x)-$\frac{2}{t}$x2只有一個零點,求正數(shù)t的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知函數(shù)f(x)=$\frac{x}{x+1}$,則f(2)=(  )
A.$\frac{2}{3}$B.$\frac{3}{4}$C.$\frac{1}{2}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.一個等差數(shù)列的項數(shù)為2n,若a1+a3+…+a2n-1=90,a2+a4+…+a2n=72,且a1-a2n=33,則該數(shù)列的公差是(  )
A.3B.-3C.-2D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.設函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-4x+6,x≥0}\\{x+6,x<0}\end{array}\right.$,則不等式f(x)<f(1)的解集是{x|1<x<3或x<-3}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)f(x)的定義域為R,對于任意的x,y∈R,都有f(x+y)=f(x)+f(y),且當x>0時,f(x)<0,若f(-1)=2.
(1)求f(0)的值和判斷函數(shù)f(x)的奇偶性;
(2)求證:函數(shù)f(x)是在R上的減函數(shù);
(3)求函數(shù)f(x)在區(qū)間[-2,4]上的值域.

查看答案和解析>>

同步練習冊答案